首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Monopulse DOA estimation of two unresolved Rayleigh targets   总被引:3,自引:0,他引:3  
This paper provides for new approaches to the processing of unresolved measurements as two direction-of-arrival (DOA) measurements for tracking closely spaced targets rather than the conventional single DOA measurement of the centroid. The measurements of the two-closely spaced targets are merged when the target echoes are not resolved in angle, range, or radial velocity (i.e., Doppler processing). The conditional Cramer Rao lower bound (CRLB) is developed for the DOA estimation of two unresolved Rayleigh targets using a standard monopulse radar. Then the modified CRLB is used to give insight into the boresight pointing for monopulse DOA estimation of two unresolved targets. Monopulse processing is considered for DOA estimation of two unresolved Rayleigh targets with known or estimated relative radar cross section (RCS). The performance of the DOA estimator is studied via Monte Carlo simulations and compared with the modified CRLB  相似文献   

2.
When a radar with amplitude comparison monopulse arithmetic encounters signals from multiple Gaussian sources it will "point" to the centroid of the incident radiation. The probability density function (pdf) of the monopulse ratio when N independent samples of difference and sum signals are processed in a maximum likelihood receiver is derived. For finite jam-to-noise ratio the estimate has a bias which is independent of N. The variance in the estimate does however depend upon N. Central moments of order less than or equal 2N - 2 exist and are given by a simple formula. Plots of the pdf and its bias and variance for various jam-to-noise ratios, locations of the centroid with respect to the boresight direction, and number of samples processed are presented in the accompanying figures.  相似文献   

3.
Angle estimation for two unresolved targets with monopulse radar   总被引:2,自引:0,他引:2  
Most present-day radar systems use monopulse techniques to extract angular measurements of sunbeam accuracy. The familiar "monopulse ratio" is a very effective means to derive the angle of a single target within a radar beam. For the simultaneous estimation of the angles of two closely-spaced targets, a modification on the monopulse ratio was derived in (Blair and Pearce, 2001), while (Sinha et al., 2002) presented a maximum likelihood (ML) technique via numerical search. In this paper it is shown that the ML solution can in fact be found explicitly, and the numerical search of ((Sinha et al., 2002) is unnecessary. However, the ML solution requires the signal to noise ratio (SNR) for each target to be known, and hence we generalize it so it requires only the relative SNR. Several versions of expectation maximization (EM) joint angle estimators are also derived, these differing in the degree to which prior information on SNR and on beam pattern are assumed. The performances of the different direction-of-arrival (DOA) estimators for unresolved targets are studied via Monte Carlo, and it is found that most have similar performance: this is remarkable since the use of prior information (SNR, relative SNR, beam pattern) varies widely between them. There is, however, considerable performance variability as a function of the two targets' off-boresight angles. A simple combined technique that fuses the results from different approaches is thus proposed, and it performs well uniformly.  相似文献   

4.
Unresolved Rayleigh target detection using monopulse measurements   总被引:3,自引:0,他引:3  
When the returns from two or more targets interfere (i.e., the signals are not resolved in the frequency or time domains) in a monopulse radar system, the direction-of-arrival (DOA) estimate indicated by the monopulse ratio can wander far beyond the angular separation of the targets. Generalized maximum likelihood (GML) detection of the presence of unresolved Rayleigh targets is developed with probability density functions (pdfs) conditioned on the measured amplitude of the target echoes. The Neyman-Pearson detection algorithm uses both the in-phase and quadrature portions of the monopulse ratio and requires no a priori knowledge of the signal-to-noise ratio (SNR) or DOA of either target. Receiver operating characteristic (ROC) curves are given along with simulation results that illustrate the performance and application of the algorithm  相似文献   

5.
The Effect of Jamming on Monopulse Accuracy   总被引:1,自引:0,他引:1  
An expression is applied for the probability density function (pdf) of the monopulse ratio when skin echoes from a passive target are contaminated by interference from a jammer. The analysis is valid for arbitrary signal-to-jam ratio and arbitrary locations of the target and jammer in the beam. For an on-axis skin target and a stand-off jammer at an off-axis location, the "pulling" effect of the jammer and the accuracy of the angle estimate are compared with the approximations currently employed in radar performance analysis. The pdf of the monopulse ratio for large and for small signal-to-jam ratios is presented, showing that the pdf is bimodal at small signal-to-jam ratio.  相似文献   

6.
This paper proposes a novel statistical prediction of monopulse errors (Levanon, 1988) for a radar Swerling III-IV target embedded in noise or noise jamming where multiple observations are available. First, the study of the maximum likelihood estimator (MLE) of the complex monopulse ratio for a Swerling III-IV target embedded in spatially white noise allows us to extend the use of the MLE practical approximate form introduced by Mosca (1969) for Swerling 0-I-II cases. Afterward, we derive analytical formulas for both the mean and variance of the MLE in approximate form conditioned by the usual detection step performed on the sum channel of a monopulse antenna. Last, we provide a comparison of target direction of arrival (DOA) estimation performance based on monopulse ratio estimation as a function of the Swerling model in the context of a multifunction radar.  相似文献   

7.
In many monopulse radars, feedback in the angle-tracking servo system is taken to be directly proportional to the monopulse ratio. In those radars, monopulse measurements are conditioned on simultaneous occurrences of receiver sum-channel video exceeding a detection threshold: if a detection fails to occur, the measurement is ignored, and the angle-tracking servo is made to coast. Such conditioning is shown to be necessary in order that the noise power be finite in the servo feedback. The conditional mean value and conditional variance of the monopulse ratio are derived and quantified in terms of threshold level as well as signal-to-noise ratio. The formulation permits the noise covariance between receiver difference and sum channels to be complex rather than only real-valued, so that the sources of noise jamming are not required to be positioned in the receiving-antenna mainlobe and to be copolarized with the antenna response there. Nonfluctuating and Rayleigh-fluctuating target cases are considered and compared, and fluctuation loss is quantified  相似文献   

8.
Maximum likelihood angle extractor for two closely spaced targets   总被引:2,自引:0,他引:2  
In a scenario of closely spaced targets special attention has to be paid to radar signal processing. We present an advanced processing technique, which uses the maximum likelihood (ML) criterion to extract from a monopulse radar separate angle measurements for unresolved targets. This processing results in a significant improvement, in terms of measurement error standard deviations, over angle estimators using the monopulse ratio. Algorithms are developed for Swerling I as well as Swerling III models of radar cross section (RCS) fluctuations. The accuracy of the results is compared with the Cramer Rao lower bound (CRLB) and also to the monopulse ratio technique. A novel technique to detect the presence of two unresolved targets is also discussed. The performance of the ML estimator was evaluated in a benchmark scenario of closely spaced targets - closer than half power beamwidth of a monopulse radar. The interacting multiple model probabilistic data association (IMMPDA) track estimator was used in conjunction with the ML angle extractor  相似文献   

9.
In this paper we consider the problem of estimation of angle of arrival in an Amplitude Comparison Monopulse antenna arrangement with the explicit inclusion of internally generated thermal, i.e., receiver, noise as an interference to the desired measurement. A pulsed type radar is assumed, and an ideal (i.e., point) radar target is postulated. This latter restriction is made so that consideration of the effects of target scintillation, glint, or other external random phenomena can be excluded from our treatment of the problem. In this context, a maximum likelihood analysis is made to determine the form of the estimate of angle of arrival, and the probability density function (pdf) of this quantity is computed. The form of the estimate is found to be a ratio of Gaussian variables quite like that used in conventional monopulse signal processing. The pdf obtained for the estimate is believed to be new, and it serves to emphasize the bias and indeterminate variance effects associated with this type of nonlinear signal processing. Some useful approximations to the pdf are discussed, and a unit of precision for the estimate is defined.  相似文献   

10.
In the presence of sea-surface multipath monopulse radar signals from a low elevation target have three alternative paths in addition to the direct (radar-to-target) path due to reflections from the sea surface. The specular reflection causes significant signal fading. The diffuse reflection causes an approximately constant bias to the in-phase component of the monopulse ratio, which is the standard extractor of the direction of arrival (DOA) in the monopulse processing. The diffuse reflection also causes higher standard deviation to the in-phase component of the monopulse ratio. We propose a maximum likelihood (ML) angle extraction technique for low elevation targets of known average signal strength having a Rayleigh fluctuation. The results show that this method reduces the error of the estimated angle compared with the conventional monopulse ratio estimator. Subsequently, the ML angle extractor is modified for the unknown average signal strength case. This modified angle extractor has only a small performance degradation compared with the known average signal strength case, but it performs much better than the monopulse ratio based estimator. An algorithm to calculate the accuracy of the estimated angle (or height) is also presented. This angle extractor reduces the root-mean-square error (RMSE) by more than 50% in the signal processing stage when used in a low flying target tracking scenario. The same algorithm can be used to track sea skimmers.  相似文献   

11.
A simple derivation of the probability distribution of the monopulse ratio is presented. The derivation is based upon a conditional distribution and considers both Rayleigh targets and simple non-Rayleigh cases. The mean is obtained almost without calculation. The variance expression is given completely general noise and glint interpretation. Analytical expressions for angle error mean and spread, including noise, target width, and unresolved targets, are presented as functions of antenna position, in simple and comprehensive diagrams  相似文献   

12.
This work deals with the problem of estimating complex amplitudes, Doppler frequencies, and directions of arrival (DOA) of multiple targets present in the same range-azimuth resolution cell of a surveillance radar. The maximum likelihood (ML) and the asymptotic (large sample size) ML (AML) estimators are derived. To reduce the computational complexity of the maximization of the nonlinear two-dimensional criterion function of the AML estimator, we propose a computationally efficient algorithm based on the RELAXation method. It allows decoupling the problem of jointly estimating the parameters of the signal components into a sequence of simpler problems, where the parameters of each component are separately and iteratively estimated. The proposed method overcomes the resolution limitation of the classical monopulse technique and resolves multiple targets exhibiting an arbitrarily small difference in azimuth as long as their Doppler frequencies differ at least by the inverse of the number of integrated pulses, provided that enough signal-to-noise ratio (SNR) per pulse is available. The performance of the proposed AML-RELAX estimator is numerically investigated through Monte Carlo simulation and Cramer-Rao lower bound (CRLB) calculation.  相似文献   

13.
The effects 1-bit quantization of the input samples has on the direction-of-arrival (DOA) estimation accuracy are considered. The signal model assumes a single stochastic Gaussian point source that is embedded in white Gaussian noise (WGN). The inherent limitations governed by the extreme clipping of the input data are analyzed using the Cramer-Rao bound (CRB) that is derived for a two-sensor array. In addition, several estimators for the I-bit estimation are discussed. Numerical and analytical analyses of the estimation error reveal weak dependency on signal-to-noise ratio (SNR) with singular behavior of the estimation error in certain DOA angles.  相似文献   

14.
The classical detection step in a monopulse radar system is based on the sum beam only,the performance of which is not optimal when target is not at the beam center. Target detection aided by the difference beam can improve the performance at this case. However, the existing difference beam aided target detectors have the problem of performance deterioration at the beam center, which has limited their application in real systems. To solve this problem, two detectors are proposed in this paper. Assuming the monopulse ratio is known, a generalized likelihood ratio test(GLRT) detector is derived, which can be used when targeting information on target direction is available. A practical dual-stage detector is proposed for the case that the monopulse ratio is unknown. Simulation results show that performances of the proposed detectors are superior to that of the classical detector.  相似文献   

15.
This paper describes data-aided signal level and noise variance estimators for Gaussian minimum shift keying (GMSK) when the observations are limited to the output of a filter matched to the first pulse-amplitude modulation (PAM) pulse in the equivalent PAM representation. The estimators are based on the maximum likelihood (ML) principle and assume burst-mode transmission with known timing and a block of L0 known bits. While it is well known that ML estimators are asymptotically unbiased and efficient, the analysis quantifies the rate at which the estimators approach these asymptotic properties. It is shown that the carrier phase, amplitude, and noise variance estimators are unbiased and can achieve their corresponding Cramer-Rao bounds with modest combinations of signal-to-noise ratio and observation length. The estimates are used to estimate the signal-to-noise ratio. It is shown that the mean squared error performance of the ratio increases with signal-to-noise ratio while the mean squared error performance of the ratio in decibels decreases with signal-to-noise ratio. Simulation results are provided to confirm the accuracy of the analytic results.  相似文献   

16.
A new technique is developed to compensate multiple-wavelength distortion in airborne antenna arrays. This approach exploits the phase information in microwave reflections from arbitrary terrain. To handle reflections incident over a broad angle, a range-Doppler preprocessor is used in each element channel to resolve wavefronts incident simultaneously from different directions. The phase information for each direction of arrival is compared between elements and processed by optimal estimators to determine the phase corrections needed to compensate the distortion. To develop the estimators, a statistical model of the complex baseband terrain reflections is developed. This is in turn used to generate conditional probability densities involving the range Doppler observations and the parameters to be estimated. These densities are subsequently used to develop minimum variance and maximum likelihood estimators. The new estimators use additional information that has not been exploited by previous techniques and therefore provide enhanced performance  相似文献   

17.
The problem of tracking targets in the presence of reflections from sea or ground is addressed. Both types of reflections (specular and diffuse) are considered. Specular reflection causes large peak errors followed by an approximately constant bias in the monopulse ratio, while diffuse reflection has random variations which on the average generate a bias in the monopulse ratio. Expressions for the average error (bias) in the monopulse ratio due to specular and diffuse reflections and the corresponding variance in the presence of noise in the radar channels are derived. A maximum maneuver-based filter and a multiple model estimator are used for tracking. Simulation results for five scenarios, typical of sea skimmers, with Swerling III fluctuating radar cross sections (RCSs) indicate the significance and efficiency of the technique developed in this paper-a 65% reduction of the rms error in the target height estimate.  相似文献   

18.
Many radar systems use the monopulse ratio to extract angle of arrival (AOA) measurements in both azimuth and elevation angles. The accuracies of each such measurement are reasonably well known: each measurement is, conditioned on the sum-signal return, Gaussian-distributed with calculable bias (relative to the true AOA), and variance. However, we note that the two monopulse ratios are functions of basic radar measurements that are not entirely independent, specifically in that the sum signal is common to both. The effect of this is that the monopulse ratios are dependent, and a simple explicit expression is given for their correlation; this is of considerable interest when the measurements are supplied to a tracking algorithm that requires a measurement covariance matrix. The system performance improvement when this is taken into account is quantified: while it makes little difference for a tracking radar with small pointing errors, there are more substantial gains when a target is allowed to stray within the beam, as with a rotating (track-while-scan) radar or when a single radar dwell interrogates two or more targets at different ranges. But in any case, the correct covariance expression is so simple that there is little reason not to use it. We additionally derive the Cramer-Rao lower bound (CRLB) on joint azimuth/elevation angle estimation and discover that it differs only slightly from the covariance matrix corresponding to the individual monopulse ratios. Hence, using the individual monopulse ratios and their simple joint accuracy expression is an adequate and quick approximation of the optimal maximum likelihood procedure for single resolved targets.  相似文献   

19.
Given the joint probability density function (pdf), pX(xl, ..., xN), of the random variables x1, xN, a new method is developed for determining the pdf of the ratio f(X)lg(X) where f and g are arbitrary functions. The method is then applied to calculate the pdf of x1 lx2 where x1 and x2 are correlated Gaussians with arbitrary means and variances.  相似文献   

20.
冲击杂波下的MIMO雷达DOA估计方法   总被引:1,自引:1,他引:0  
江胜利  王鞠庭  何劲  刘中 《航空学报》2009,30(8):1454-1459
研究了对称α稳定分布(SαS)冲击杂波下的多输入多输出(MIMO)雷达目标波达方向(DOA)估计问题,分别提出基于分数低阶最小方差无畸变响应(FrMVDR)的MIMO雷达DOA估计算法和无穷范数归一化最小方差无畸变响应(Inf-MVDR)算法。FrMVDR算法,首先进行冲击杂波特征指数的估计,然后使MIMO雷达接收阵列的分数低阶输出功率最小,实现MIMO雷达的DOA估计。为了避免FrMVDR算法对杂波特征指数估计,提出Inf-MVDR算法,首先用无穷范数对接收信号进行归一化处理,使归一化后的阵列输出功率有界,继而采用传统MVDR算法进行DOA估计。计算机仿真验证了上述两种算法的有效性;同时仿真结果还表明在冲击杂波下,MIMO雷达的空间分集特性可显著提高DOA估计的精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号