首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 132 毫秒
1.
Performance analysis of bearing-only target location algorithms   总被引:1,自引:0,他引:1  
The performance of two well-known bearing-only location techniques, the maximum likelihood (ML) and the Stansfield estimators, is examined. Analytical expressions are obtained for the bias and the covariance matrix of the estimation error, which permit performance comparison for any case of interest. It is shown that the Stansfield algorithm provides biased estimates even for large numbers of measurements, in contrast with the ML method. The RMS error of the Stansfield technique is not necessarily larger than the RMS of the ML technique. However, it is shown that the ML technique is superior to the Stansfield method when the number of measurements is large enough. Simulation results verify the predicted theoretical performance  相似文献   

2.
The estimation of the delay between two signals is examined in the limit of high signal-to-noise ratio (SNR). It is shown that for the case of white noise, cross correlation with no prefiltering approaches the optimal maximum-likelihood (ML) estimator as the SNR grows to infinity. In simulation experiments with SNRs greater than 1, it outperforms the approximate ML estimator, which is based on estimated spectra. Other algorithms, such as generalized cross correlation or parameter estimation algorithms, are shown to be suboptimal at high SNRs  相似文献   

3.
The application of existing estimation theory to the problem of specification and performance of passive sonar spectral estimators is considered. The classification function is addressed, so that the signal is assumed to be present, and so that the energy arrival angle is known. The spatial filter considered is a line array of M equally spaced omnidirectional hydrophones. Signal and ambient noise are both zero-mean, wide-sense, stationary Gaussian random processes that differ in their spatial correlation across the face of the array. The signal is a plane wave that can be made totally spacially corrected between array elements by inserting delays between sensors to invert the signal propagation delay. The noise correlation is a function of frequency, bandwidth, element separation, and the relative time delay between sensors. Under these assumptions, the Cramer-Rao lower bound is derived for the class of unbiased estimates of signal power in a narrow frequency band at the hydrophone in the presence of correlated ambient noise of known power. The bound is examined numerically, resulting in a threshold phenomenon with M that constitutes a new design consideration. In addition, there is a striking insensitivity to realistic values of ambient noise correlation, and there are ranges in signal-to-noise ratio for which one gains more by increasing M than by increasing the bandwidth-time product. Specific processors, including a new unbiased estimator when noise power is unknown, are developed.  相似文献   

4.
Angle estimation for two unresolved targets with monopulse radar   总被引:2,自引:0,他引:2  
Most present-day radar systems use monopulse techniques to extract angular measurements of sunbeam accuracy. The familiar "monopulse ratio" is a very effective means to derive the angle of a single target within a radar beam. For the simultaneous estimation of the angles of two closely-spaced targets, a modification on the monopulse ratio was derived in (Blair and Pearce, 2001), while (Sinha et al., 2002) presented a maximum likelihood (ML) technique via numerical search. In this paper it is shown that the ML solution can in fact be found explicitly, and the numerical search of ((Sinha et al., 2002) is unnecessary. However, the ML solution requires the signal to noise ratio (SNR) for each target to be known, and hence we generalize it so it requires only the relative SNR. Several versions of expectation maximization (EM) joint angle estimators are also derived, these differing in the degree to which prior information on SNR and on beam pattern are assumed. The performances of the different direction-of-arrival (DOA) estimators for unresolved targets are studied via Monte Carlo, and it is found that most have similar performance: this is remarkable since the use of prior information (SNR, relative SNR, beam pattern) varies widely between them. There is, however, considerable performance variability as a function of the two targets' off-boresight angles. A simple combined technique that fuses the results from different approaches is thus proposed, and it performs well uniformly.  相似文献   

5.
The conditional probability density function (pdf) is developed for each monopulse measurement of a Rayleigh target by conditioning the pdf of the complex monopulse ratio on the measured amplitude of the sum signal. The conditional pdf is used to develop the conditional Cramer-Rao Lower Bound (CRLB) for any unbiased estimator of the direction-of-arrival (DOA). Conditional maximum likelihood (CML) and conditional method of moments (CMM) estimators of the DOA are developed along with estimates of the variances associated with the monopulse ratio and DOA estimate. Using simulation results, the performances of the CML and CMM estimators of the DOA are compared with the performance of standard monopulse ratio and the performances of the variance estimators are also studied  相似文献   

6.
The effects of implementation errors in tapped delay line filters on the peak-to-sidelobe ratio and the signal-to-noise ratio of binary PSK pulse compression codes are considered. As error model the delay elements and weighting factors of such filters are assumed to have an error distribution with known mean and variance.  相似文献   

7.
8.
A method of estimating the centroid location of a target utilizing radar scan return amplitude versus angle information is presented. The method is compared with three thresholding estimators and a first moment estimator in a computer-simulated automatic landing system. This new method is the most robust and accurate during periods of low signal-to-noise ratio. In periods of high signal-to-noise ratio the method has less error than the thresholding methods and is similar in accuracy to the first moment estimator. Furthermore, the number of pulse transmissions required to obtain a desired level of performance in noise is much less than that needed for the thresholding methods and the first moment estimator employed in this simulation.  相似文献   

9.
The effects 1-bit quantization of the input samples has on the direction-of-arrival (DOA) estimation accuracy are considered. The signal model assumes a single stochastic Gaussian point source that is embedded in white Gaussian noise (WGN). The inherent limitations governed by the extreme clipping of the input data are analyzed using the Cramer-Rao bound (CRB) that is derived for a two-sensor array. In addition, several estimators for the I-bit estimation are discussed. Numerical and analytical analyses of the estimation error reveal weak dependency on signal-to-noise ratio (SNR) with singular behavior of the estimation error in certain DOA angles.  相似文献   

10.
Adaptive array receiving antennas can be designed to sense the external noise field and to optimize the array illumination function. A substantial improvement in signal-to-noise ratio can be obtained with adaptive arrays when the external noise field is nonuniformly distributed in angle. The external noise process may be time varying and contain both discrete sources and continuously distributed sources. Two adaptive array implementations which maximize the signal-to-noise ratio are described in this paper. Expressions are derived for control-loop noise, i.e., the variance of the array element weights, and for the additional noise in the array output due to this element weight noise. It is shown that both the element weight noise and the array convergence rate are determined by the eigenvalues of the noise covariance matrix.  相似文献   

11.
An instrumental variable (IV) approach is presented for estimating the weights of an adaptive antenna array. Theoretical analysis of the IV method shows that the antenna gain weights are independent of finitely correlated noise, so that unbiased estimation of signal arrival angles is possible. Only matrix inversions are required to compute the weight estimates. In this sense, the IV method provides performance comparable with eigenvector techniques but with lower computational burden. Both minimal and overdetermined IV estimators are derived. The overdetermined estimators give the same theoretical array weights as minimal estimators, but yield more accurate weight estimates in real data situations. Simulation results are presented to compare these IV methods with one another and with conventional matrix inversion weight estimators. In these examples it is seen that IV methods are able to resolve closely spaced interference sources when conventional matrix inversion techniques cannot. It is also shown that overdetermined methods are capable of providing weight estimates with lower variances than those of minimal methods  相似文献   

12.
Geolocation of a known altitude object from TDOA and FDOA measurements   总被引:4,自引:0,他引:4  
Most satellite systems for locating an object on Earth use only time difference of arrival (TDOA) measurements. When there are relative motions between an emitter and receivers, frequency difference of arrival (FDOA) measurements can be used as well. Often, the altitude of an object is known (it is zero, for example) or can be measured with an altimeter. Two sets of geolocation solutions are proposed which exploit the altitude constraint to improve the localization accuracy. One is for TDOAs alone and the other for the combination of TDOA and FDOA measurements. The additional complexity by imposing the constraint is a one-dimensional Newton's search and the rooting of a polynomial. The covariance matrices of the new estimators are derived under a small measurement noise assumption and shown to attain the constrained Cramer-Rao lower bound (CRLB). When there is a bias error in the assumed altitude, using the altitude constraint will introduce a bias to the solution. Since applying the constraint decreases the variance, there is a tradeoff between variance and bias in the mean square error (MSE). The maximum allowable altitude error such that the constraint solution will remain superior to the unconstraint is given. Simulation results are included to corroborate the theoretical development.  相似文献   

13.
The phase-locked loop behavior is analyzed following the quasilinearization Booton's method. When the loop is locked on an unmodulated input signal with a static phase error, the phase detector nonlinearity produces an interaction between the static phase error and the voltage-controlled-oscillator (VCO) noise phase fluctuations. Formulas allowing one to compute the static phase error increase and the VCO phase variance increase are derived. When the input signal is phase modulated, there is an interaction between the static phase error, the VCO noise phase fluctuations, and the input signal phase modulation. Formulas are obtained that allow one to compute the loop loss of performances (static phase error increase and VCO phase variance increase) and the coherent phase demodulator output signal-to-noise ratio decrease. Finally, a slight modification to Booton's procedure is proposed, leading to results in better agreement with experimental data.  相似文献   

14.
A statistical test is postulated for detecting, with an M-element hydrophone array, a Gaussian signal in spatially independent Gaussian noise of unknown power. The test is an extension of the uniformly-most-powerful (UMP) unbiased test for a two-element array. The output signal-to-noise ratio of the test is calculated and, for a large number of independent space-time samples, is shown to be no better than a mean-level detector (MLD). Receiver operating characteristic curves (ROC) for the MLD are computed and compared to the ROC curves for the optimum (Bayes) parametric detector. The input signal-to-noise power ratios required to provide a detection probability of 0.5 differ by less than 0.2 dB for a fifty-element array with wide variation in false-alarm probability and time-bandwidth product. This result suggests that both the extended bivariate UMP unbiased test and the MLD perform close to the unknown UMP unbiased test for independence of a multivariate Gaussian distribution.  相似文献   

15.
A decision-directed (DD) technique for the detection of overlapping PCM/NRZ signals in the presence of white Gaussian noise is investigated. The performance of the DD detector is represented by probability of error PE versus input signal-to-noise ratio (SNR). To examine how much improvement in performance can beachieved with this technique, PE's with and without DD feedback are evaluated in parallel. Further, analytical results are compared with those found by Monte Carlo simulations. The results are shown in good agreement.  相似文献   

16.
Joint maximum likelihood estimators are presented for the signal amplitude and noise power density in a coherent PCM channel with white Gaussian noise and a correlation receiver. The estimates are based upon the correlation coefficient outputs of the receiver. From these estimators, an estimator for the quantity (received signal energy)/bit/,(noise power)/(unit bandwidth) upon which the error probabilities depend, is derived. This estimator is shown to be useful as 1) a point estimator for the signal-to-noise ratio for the higher values of this ratio (about 4 dB or greater), and 2) an easily calculated statistic upon which to base data acceptance or rejection criteria. The acceptance or rejection levels are obtained by the use of confidence interval curves in conjunction with word error probability data.  相似文献   

17.
The complex angle (CA) method for resolving a low angle target from its multipath signal is evaluated in the presence of system noise. It is shown that standard deviation improvements of around 3-to-1 can be achieved at a 20-dB signal-to-noise power ratio relative to a normal monopulse system without the CA. It is also shown that the CA method is unbiased, giving bias improvements of as much as 100 times relative to normal monopulse. Evaluation of the assumptions in the technique shows very little sensitivity to knowledge of the reflecting surface's conductivity or dielectric constant. However, the method is somewhat sensitive to knowledge of surface roughness.  相似文献   

18.
This work deals with the problem of estimating complex amplitudes, Doppler frequencies, and directions of arrival (DOA) of multiple targets present in the same range-azimuth resolution cell of a surveillance radar. The maximum likelihood (ML) and the asymptotic (large sample size) ML (AML) estimators are derived. To reduce the computational complexity of the maximization of the nonlinear two-dimensional criterion function of the AML estimator, we propose a computationally efficient algorithm based on the RELAXation method. It allows decoupling the problem of jointly estimating the parameters of the signal components into a sequence of simpler problems, where the parameters of each component are separately and iteratively estimated. The proposed method overcomes the resolution limitation of the classical monopulse technique and resolves multiple targets exhibiting an arbitrarily small difference in azimuth as long as their Doppler frequencies differ at least by the inverse of the number of integrated pulses, provided that enough signal-to-noise ratio (SNR) per pulse is available. The performance of the proposed AML-RELAX estimator is numerically investigated through Monte Carlo simulation and Cramer-Rao lower bound (CRLB) calculation.  相似文献   

19.
A new nonlinear filtering and prediction (NFP) algorithm with input es?imation is proposed for maneuvering target tracking. In the proposed method, the acceleration level is determined by a decision process, where a least squares (LS) estimator plays a major role in detecting target maneuvering within a sliding window. We first illustrate that the optimal solution to minimize the mean squared error (MSE) must consider a trade-off between the bias and error variance. For the application of target tracking, we then derive the MSE of target positions in a closed form by using orthogonal space decompositions. Then we discuss the NFP estimator, and evaluate how well the approach potentially works in the case of a set of given system parameters. Comparing with the traditional unbiased minimum variance filter (UMVF), Kalman filter, and interactive multiple model (IMM) algorithms, numerical results show that the newly proposed NFP method performs comparable or better in all scenarios with significantly less computational requirements.  相似文献   

20.
Maximum likelihood angle extractor for two closely spaced targets   总被引:2,自引:0,他引:2  
In a scenario of closely spaced targets special attention has to be paid to radar signal processing. We present an advanced processing technique, which uses the maximum likelihood (ML) criterion to extract from a monopulse radar separate angle measurements for unresolved targets. This processing results in a significant improvement, in terms of measurement error standard deviations, over angle estimators using the monopulse ratio. Algorithms are developed for Swerling I as well as Swerling III models of radar cross section (RCS) fluctuations. The accuracy of the results is compared with the Cramer Rao lower bound (CRLB) and also to the monopulse ratio technique. A novel technique to detect the presence of two unresolved targets is also discussed. The performance of the ML estimator was evaluated in a benchmark scenario of closely spaced targets - closer than half power beamwidth of a monopulse radar. The interacting multiple model probabilistic data association (IMMPDA) track estimator was used in conjunction with the ML angle extractor  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号