首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
To investigate the transient aeroelastic responses and flutter characteristics of a variablespan wing during the morphing process,a novel frst-order state-space aeroelastic model is proposed.The time-varying structural model of the morphing wing is established based on the Euler-Bernoulli beam theory with time-dependent boundary conditions.A nondimensionalization method is used to translate the time-dependent boundary conditions to be time-independent.The time-domain aerodynamic forces are calculated by the reduced-order unsteady vortex lattice method.The morphing parameters,i.e.,wing span length and morphing speed,are of particular interest for understanding the fundamental aeroelastic behavior of variable-span wings.A test case is proposed and numerical results indicate that the flutter characteristics are sensitive to both of the two morphing parameters.It could be noticed that the aeroelastic characteristics during the wing extracting process are more serious than those during the extending process at the same morphing speed by transient aeroelastic response analysis.In addition,a faster morphing process can get better aeroelastic performance while the mechanism comlexity will arise.  相似文献   

2.
In this study, a multi-input/multi-output(MIMO) time-delay feedback controller is designed to actively suppress the flutter instability of a multiple-actuated-wing(MAW) wind tunnel model in the low subsonic flow regime. The unsteady aerodynamic forces of the MAW model are computed based on the doublet-lattice method(DLM). As the first attempt, the conventional linear quadratic-Gaussian(LQG) controller is designed to actively suppress the flutter of the MAW model. However, because of the time delay in the control loop, the wind tunnel tests illustrate that the LQG-controlled MAW model has no guaranteed stability margins. To compensate the time delay, hence, a time-delay filter, approximated via the first-order Pade approximation, is added to the LQG controller. Based on the time-delay feedback controller, a new digital control system is constructed by using a fixed-point and embedded digital signal processor(DSP) of high performance. Then, a number of wind tunnel tests are implemented based on the digital control system.The experimental results show that the present time-delay feedback controller can expand the flutter boundary of the MAW model and suppress the flutter instability of the open-loop aeroelastic system effectively.  相似文献   

3.
A rapid and efficient method for static aeroelastic analysis of a flexible slender wing when considering the structural geometric nonlinearity has been developed in this paper. A non-planar vortex lattice method herein is used to compute the non-planar aerodynamics of flexible wings with large deformation. The finite element method is introduced for structural nonlinear statics analysis. The surface spline method is used for structure/aerodynamics coupling. The static aeroelastic characteristics of the wind tunnel model of a flexible wing are studied by the nonlinear method presented, and the nonlinear method is also evaluated by comparing the results with those obtained from two other methods and the wind tunnel test. The results indicate that the traditional linear method of static aeroelastic analysis is not applicable for cases with large deformation because it produces results that are not realistic. However, the nonlinear methodology, which involves combining the structure finite element method with the non-planar vortex lattice method, could be used to solve the aeroelastic deformation with considerable accuracy, which is in fair agreement with the test results. Moreover, the nonlinear finite element method could consider complex structures. The non-planar vortex lattice method has advantages in both the computational accuracy and efficiency. Consequently, the nonlinear method presented is suitable for the rapid and efficient analysis requirements of engineering practice. It could be used in the preliminary stage and also in the detailed stage of aircraft design.  相似文献   

4.
Aerodynamic parameters obtained from separation experiments of internal stores in a wind tunnel are significant in aircraft designs. Accurate wind tunnel tests can help to improve the release stability of the stores and in-flight safety of the aircrafts in supersonic environments.A simulative system for free drop experiments of internal stores based on a practical project is provided in this paper. The system contains a store release mechanism, a control system and an attitude measurement system. The release mechanism adopts a six-bar linkage driven by a cylinder, which ensures the release stability. The structure and initial aerodynamic parameters of the stores are also designed and adjusted. A high speed vision measurement system for high speed rolling targets is utilized to measure the pose parameters of the internal store models and an optimizing method for the coordinates of markers is presented based on a priori model. The experimental results show excellent repeatability of the system, and indicate that the position measurement precision is less than0.13 mm, and the attitude measurement precision for pitch and yaw angles is less than 0.126°, satisfying the requirements of practical wind tunnel tests. A separation experiment for the internal stores is also conducted in the FL-3 wind tunnel of China Aerodynamics Research Institute.  相似文献   

5.
Bifurcation in a 3-DOF Airfoil with Cubic Structural Nonlinearity   总被引:1,自引:0,他引:1  
Limit cycle oscillations (LCOs) as well as nonlinear aeroelastic analysis of a 3-DOF aeroelastic airfoil motion with cubic restoring moments in the pitch degree of freedom are investigated.Aeroelastic equations of an airfoil with control surface in an incompressible potential flow are presented in the time domain.The harmonic balance (HB) method is utilized to calculate the LCO frequency and amplitude for the airfoil.Also the semi-analytical method has revealed the presence of stable and unstable limit cycles,along with stability reversal in the neighborhood of a Hopf bifurcation.The system response is determined by numerically integrating the governing equations using a standard Runge-Kutta algorithm and the obtained results are compared with the HB method.Also the results by the third order HB (HB3) method for control surface are consistent with the other numerical solution.Finally,by combining the numerical and the HB methods,types of bifurcation,be it supercritical,subcritical,or divergent flutter area are identified.  相似文献   

6.
Responding to a need for experimental data on a standard wind tunnel model at high angles of attack in the supersonic speed range, and in the absence of suitable reference data, a series of tests of two HB-2 standard models of different sizes was performed in the T-38 trisonic wind tunnel of Vojnotehnickˇi Institut(VTI), in the Mach number range 1.5–4.0, at angles of attack up to+30°. Tests were performed at relatively high Reynolds numbers of 2.2 millions to 4.5 millions(based on model forebody diameter). Results were compared with available low angle of attack data from other facilities, and, as a good agreement was found, it was assumed that, by implication, the obtained high angle of attack results were valid as well. Therefore, the results can be used as a reference database for the HB-2 model at high angles of attack in the supersonic speed range, which was not available before. The results are presented in comparison with available reference data, but also contain data for some Mach numbers not given in other publications.  相似文献   

7.
This paper deals with the aeroelastic tailoring of aeronautical composite wing surfaces. The objective function is structural weight. Multi constraints, such as displacements, flutter speed and gauge requirements, are taken into consideration. Finite element method is used to the static analysis. Natural vibration modes are obtained by the spectral transformation Lanczos method. Subsonic doublet lattice method is used to obtain the unsteady aerodynamics.The critical flutter speed is generated by V-g method.The optimal problem is solved by the feasible direction method.The thickness of the composite wing skin is simulated by bicubic polynomials, whose coefficients combined with the cross-sectional areas or thicknesses of other finite elements are the design variables. The scale of the problem is reduced by variable linkage. Derivative analysis is performed analytically.Two composite wing boxes and a swept-back composite wing are optimized at the end of the paper.  相似文献   

8.
机翼颤振的区间有限元分析(英文)   总被引:5,自引:2,他引:3  
Wang  Qiu   《中国航空学报》2008,21(2):134-140
The influences of uncertainties in structural parameters on the flutter speed of wing are studied. On the basis of the deterministic flutter analysis model of wing, the uncertainties in structural parameters are considered and described by interval numbers. By virtue of first-order Taylor series expansion, the lower and upper bound curves of the transient decay rate coefficient versus wind velocity are given. So the interval estimation of the flutter critical wind speed of wing can be obtained, which is more reasonable than the point esti- mation obtained by the deterministic flutter analysis and provides the basis for the further non-probabilistic interval reliability analysis of wing flutter. The flow chart for interval fmite element model of flutter analysis of wing is given. The proposed interval finite element model and the stochastic finite element model for wing flutter analysis are compared by the examples of a three degrees of freedom airfoil and fuselage and a 15° sweptback wing, and the results have shown the effectiveness and feasibility of the presented model. The prominent advantage of the proposed interval finite element model is that only the bounds of uncertain parameters are required, and the probabilistic distribution densities or other statistical characteristics are not needed.  相似文献   

9.
In wind tunnels, long cantilever sting support systems with low structural damping encounter flow separation and turbulence during wind tunnel tests, which results in destructive low-frequency and big-amplitude resonance, leading to data quality degradation and test envelope limitation. To ensure planed test envelope and obtain high-quality data, an active damping vibration control system independent of balance signal based on stackable piezoelectric actuators and velocity feedback using accelerometer, is proposed to improve the support stability and wind tunnel testing safety in transonic wind tunnel. Meanwhile, a design of powerful sting-root embedded active damping device is given and an active vibration control method is presented based on the mechanism analysis of aircraft model vibration. Furthermore, a self-adaptive fuzzy Proportion Differentiation(PD) control model is proposed to realize control parameters adjustment automatically for various testing conditions. Besides, verification tests are performed in laboratory and a continuous transonic wind tunnel. Experimental results indicate that the aircraft model does not vibrate obviously from -4° to 11° at Ma = 0.6, the number of useable angle-of-attack has increased by 7° at Ma = 0.6 and 5° at Ma = 0.7 respectively, satisfying the requirements of practical wind tunnel tests.  相似文献   

10.
《中国航空学报》2016,(1):41-52
A new approach for the prediction of lift, drag, and moment coefficients is presented. This approach is based on the support vector machines (SVMs) methodology and an optimization meta-heuristic algorithm called extended great deluge (EGD). The novelty of this approach is the hybridization between the SVM and the EGD algorithm. The EGD is used to optimize the SVM parameters. The training and validation of this new identification approach is realized using the aerodynamic coefficients of an ATR-42 wing model. The aerodynamic coefficients data are obtained with the XFoil software and experimental tests using the Price–Pa?doussis wind tunnel. The predicted results with our approach are compared with those from the XFoil software and experimental results for different flight cases of angles of attack and Mach numbers. The main pur-pose of this methodology is to rapidly predict aircraft aerodynamic coefficients.  相似文献   

11.
《中国航空学报》2020,33(9):2357-2371
The nonlinear aeroelastic behavior of a folding fin in supersonic flow is investigated in this paper. The finite element model of the fin is established and the deployable hinges are represented by three torsion springs with the freeplay nonlinearity. The aerodynamic grid point is assumed to be at the center of each aerodynamic box for simplicity. The aerodynamic governing equation is given by using the infinite plate spline method and the modified linear piston theory. An improved fixed-interface modal synthesis method, which can reduce the rigid connections at the interface, is developed to save the problem size and computation time. The uniform temperature field is applied to create the thermal environment. For the linear flutter analyses, the flutter speed increases first and then decreases with the rise of the hinge stiffness due to the change of the flutter coupling mechanism. For the nonlinear analyses, a larger freeplay angle results in a higher vibration divergent speed. Two different types of limit cycle oscillations and a multiperiodic motion are observed in the wide range of airspeed under the linear flutter boundary. The linear flutter speed shows a slight descend in the thermal environment, but the effect of the temperature on the vibration divergent speed is different under different hinge stiffnesses when there exists freeplay.  相似文献   

12.
The flutter characteristics of an actuator-fin system are investigated with structural nonlinearity and dynamic stiffness of the electric motor. The component mode substitution method is used to establish the nonlinear governing equations in time domain and frequency domain based on the fundamental dynamic equations of the electric motor and decelerator. The existing describing function method and a proposed iterative method are used to obtain the flutter characteristics containing preload freeplay nonlinea...  相似文献   

13.
基于模态综合法的含间隙折叠舵面动态特性分析   总被引:1,自引:0,他引:1  
王强  马志赛  张欣  刘艳  丁千 《航空学报》2020,41(5):223507-223507
基于模态综合法对含间隙折叠舵面的非线性动态特性进行了研究。首先根据折叠舵面的结构特性建立含铰链连接的有限元模型,并采用双协调自由界面模态综合法对折叠舵面的有限元模型进行降阶。其次对不含间隙的折叠舵面进行扫频和模态实验,检验有限元模型及其降阶动力学模型的精度,并基于模型修正得到铰链的等效线性连接刚度。最后将等效线性连接刚度和间隙值进行组合,得到不同间隙下铰链的非线性连接刚度,完成含间隙折叠舵面的非线性动力学模型建立。基于非线性动力学模型对含间隙折叠舵面进行数值扫频,计算结果与实验扫频结果吻合良好,验证了所建立非线性动力学模型的精度及其在含间隙折叠舵面非线性动态特性分析中的可行性。  相似文献   

14.
不同迎角的翼型气弹特性风洞实验研究   总被引:1,自引:0,他引:1  
基于可在不同迎角下作沉浮、俯仰两自由度运动的翼段振动装置,在低速风洞中分别针对普通薄翼型NA-CA0012和风力机翼型NREL S809进行气动弹性测试,得到不同实验状态的气动弹性振动时域响应。分别观察到经典颤振和失速颤振现象,并证明了迎角改变对两种翼型颤振特性的影响。  相似文献   

15.
小宽高比钢桁架悬索桥颤振稳定气动措施的试验研究   总被引:4,自引:0,他引:4  
以某主跨730m、宽高比小于4的钢桁架加劲梁悬索桥为研究对象,通过风洞试验考察了上中央稳定板、下中央稳定板、下横梁稳定板、导流板、双中央稳定板、双下稳定板等气动措施对主梁颤振临界风速的影响。结果表明:选取一定的尺寸(或角度),上中央稳定板能大幅提高0°和3°迎角下的颤振临界风速;下中央稳定板能大幅提高0°和-3°迎角下的颤振临界风速;下横梁稳定板对颤振临界风速的影响较小;主梁两侧栏杆上的稳定板能在一定程度上提高颤振临界风速;在桥面上下同时安装中央稳定板对于各个迎角均能大幅提高颤振临界风速;在下横梁上布置双稳定板,能在一定程度上提高0°和-3°迎角下的颤振临界风速,但同时降低3°迎角下的颤振临界风速。  相似文献   

16.
大展弦比复合材料机翼失速颤振分析   总被引:1,自引:0,他引:1  
研究了大展弦比复合材料机翼在较大迎角状态下的失速颤振特性,探讨了结构几何非线性和由复合材料剪裁产生的刚度耦合效果对机翼失速颤振特性的影响.首先,将复合材料机翼建模为转角和位移均可为有限值的非线性薄壁单闭室截面Euler梁,并在综合考虑结构几何非线性、气动非线性和材料各向异性对机翼运动状态的影响的基础上,建立机翼的运动微分方程.然后,使用小扰动分析的方法得到机翼在平衡位置附近的振动方程,采用ONERA半经验的非定常失速气动力模型,获得机翼在平衡位置附近的非线性失速颤振分析方程.最后,利用谐波平衡法求解并判定机翼颤振稳定性.通过算例,首先验证了算法的正确性,然后研究了几何非线性对失速颤振的影响,并讨论不同的复合材料铺层方式导致机翼失速特性的改变.  相似文献   

17.
颤振课题是飞机设计过程中常常遇到的一个关键技术问题。以支线客机ARJ21超临界机翼颤振特性研究为背景,在俄罗斯TsAGI的T-106风洞中完成了该复合材料机翼跨音速颤振实验,基于N-S方程和无限插值方法(TFI)生成三维贴体运动网格对超临界机翼跨音速颤振进行了并行计算。结果表明:复合材料的超临界机翼在跨音速区域具有跨音速颤振"凹坑"现象;与风洞实验结果相比,有较好的一致性,为使用超临界机翼的运输类飞机跨音速颤振特性预计提供了一定的参考。  相似文献   

18.
栅格翼相对平板翼有其独特的优越性,对其气动特性进行优化很有必要。采用风洞实验和数值计算的方法,分别对不同翼弦格宽比的栅格翼及不同后掠方式的栅格翼进行了研究,风洞实验结果显示,栅格翼的翼弦格宽比存在一个气动性能的最佳值,使得升阻比最大;数值计算结果证明栅格翼前缘局部后掠能有效减小波阻,是一种新的减小栅格翼阻力的方式。  相似文献   

19.
向欢  杨应凯  谢锦睿  吴永胜 《航空学报》2020,41(6):523460-523460
为掌握战斗机在大迎角和过失速机动飞行时进气道的稳、动态气动特性,采用基于动态嵌套网格的非定常雷诺平均Navier-Stokes (URANS)方程和大迎角风洞试验方法对某战斗机进行了研究,并通过大迎角和过失速机动飞行试验进行了验证。结果表明:大迎角稳态下进气道气动性能随迎角增大逐渐降低,天地相关性吻合良好,而计算仿真和飞行试验均捕捉了眼镜蛇机动下进气道的非定常迟滞效应。通过研究获得了战斗机在大迎角和过失速机动下的进气道气动特性,建立了过失速机动下进气道非定常非线性特性问题的研究方法。  相似文献   

20.
在FL-26跨声速风洞半模试验段进行了某高速飞机T型尾翼颤振模型的光学测量实验,并依据测量结果解算了尾翼颤振模型的弯扭特性。颤振模型表面用白色圆点进行标记,用于记录模型表面的位移变化,两台固定在风洞试验段上壁板观察孔旁肋板上的400万像素工业相机用来采集图像,采集到的图像通过自主开发的图像解算软件进行图像的识别与求解,计算出尾翼颤振模型表面标记点的三维坐标。模型表面标记点的三维坐标通过坐标变化转换到风洞气流坐标系中,利用不同时刻模型表面坐标的变化计算模型剖面扭角和弹性轴位移的分布。T型尾翼右平尾图像采集实验与弯扭特性计算结果表明,非接触光学测量技术可以用于高速颤振试验的定量分析中。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号