首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 978 毫秒
1.
The paper explores a method to obtain accurate lake surface heights using measurements of the Global Navigation Satellite System (GNSS) carrier phase reflected from the lake surface. The method is referred to as Global Navigation Satellite System-Reflection (GNSS-R) open-loop difference phase altimetry method. It consists of two key technologies: one is the open-loop tracking method to track the GNSS-R signals, where the direct GNSS signal’s frequency is used as a reference frequency to obtain the carrier phases of the GNSS-R signals; the other key technology is time difference phase altimetry method to invert the lake surface heights using two or more carrier phases of GNSS-R signals received simultaneously. A validation experiment is carried out on the SANYING bridge over GUANTING lake using a GNSS-R receiver developed by the Center for Space Science and Applied Research (CSSAR), processing the data with GNSS-R open-loop difference phase altimetry method. The lake surface height results are consistent with the height results of GPS dual-frequency differential positioning altimetry. The results show that we can achieve centimeter level height in one minute average, by using 11 minutes carrier phase data of three GNSS-R signals received simultaneously.  相似文献   

2.
The APOD (Atmospheric density detection and Precise Orbit Determination) is the first LEO (Low Earth Orbit) satellite in orbit co-located with a dual-frequency GNSS (GPS/BD) receiver, an SLR reflector, and a VLBI X/S dual band beacon. From the overlap statistics between consecutive solution arcs and the independent validation by SLR measurements, the orbit position deviation was below 10?cm before the on-board GNSS receiver got partially operational. In this paper, the focus is on the VLBI observations to the LEO satellite from multiple geodetic VLBI radio telescopes, since this is the first implementation of a dedicated VLBI transmitter in low Earth orbit. The practical problems of tracking a fast moving spacecraft with current VLBI ground infrastructure were solved and strong interferometric fringes were obtained by cross-correlation of APOD carrier and DOR (Differential One-way Ranging) signals. The precision in X-band time delay derived from 0.1?s integration time of the correlator output is on the level of 0.1?ns. The APOD observations demonstrate encouraging prospects of co-location of multiple space geodetic techniques in space, as a first prototype.  相似文献   

3.
Global navigation satellite systems (GNSS) receivers can be used in time and frequency metrology by exploiting stable GNSS time scales. This paper proposes a low-cost method for precise measurement of oscillator frequency instability using a single-frequency software GNSS receiver. The only required hardware is a common radio frequency (RF) data collection device driven by the oscillator under test (OUT). The receiver solves the oscillator frequency error in high time resolution using the carrier Doppler observation and the broadcast ephemeris from one of the available satellites employing the onboard reference atomic frequency standard that is more stable than the OUT. Considering the non-stable and non-Gaussian properties of the frequency error measurement, an unbiased finite impulse response (FIR) filter is employed to obtain robust estimation and filter out measurement noise. The effects of different filter orders and convolution lengths are further discussed. The frequency error of an oven controlled oscillator (OCXO) is measured using live Beidou-2/Compass signals. The results are compared with the synchronous measurement using a specialized phase comparator with the standard coordinated universal time (UTC) signal from the master clock H226 in the national time service center (NTSC) of China as its reference. The Allan deviation (ADEV) estimates using the two methods have a 99.9% correlation coefficient and a 0.6% mean relative difference over 1–1000 s intervals. The experiment demonstrates the effectiveness and high precision of the software receiver method.  相似文献   

4.
This paper describes a new algorithm to aid stand-alone GNSS positioning in areas of bad signal reception using a Digital Elevation Model (DEM). Traditional Height-Aiding (HA) algorithms assume either a preset (fixed) value for the receiver elevation or rely on the elevation value that corresponds to the nearest available position fix. This may lead in erroneous receiver elevation estimates that, under circumstances, are inefficient to aid effectively GNSS positioning. In this study, the receiver elevation is updated at every iteration step of the navigation solution through dynamic interpolation of the elevation model. The algorithm, because of its ability to extract and fully exploit the elevation information derived from a digital model, it can prove particularly useful in forested areas with steep-sloped terrain. Extended test runs were undertaken to validate the correctness of the mathematical model and the feasibility of the algorithm and associated software. Particularly, analysis of a dataset acquired in a forested, rapidly undulating environment reveals significant average improvement in all performance metrics of positioning, namely the GNSS position availability (50%), accuracy (56%) and external reliability (86%) compared to the Standard Point Positioning (SPP) solution. Moreover, it was found that the method can cope successfully in marginal operating conditions with situations of bad satellite geometry and satellite signals affected by interference due to tree canopy.  相似文献   

5.
基于GNSS的高轨卫星定位技术研究   总被引:3,自引:0,他引:3  
利用全球卫星导航系统(GNSS)进行导航定位具有全球、全天候、实时和高精度的优点,应用于高地球轨道(HEO)卫星的定位,能够提供精确的轨道和姿态确定,并且可以克服目前主要利用地面测控系统对HEO卫星进行定位的设备复杂、投资高等缺点,使得自主导航成为可能.本文对利用GNSS的高轨卫星定位相关技术进行了研究,分析了单一GNSS系统和多个GNSS组合系统的卫星可见性、动态性和几何精度因子(GDOP).通过仿真分析表明,利用组合GNSS系统并通过提高GNSS接收机灵敏度的方法,可以解决GNSS进行HEO卫星定位的相关问题,并能保证HEO卫星定位精度的要求.   相似文献   

6.
A method for monitoring atomic clocks on board Global Navigation Satellites System (GNSS) satellites is described to address the issue of clock related signal integrity in safety–critical applications of GNSS. The carrier-phase time transfer is employed in the clock monitoring method which enables tight tracking of the satellite onboard clocks and thus improves detectability of clock anomalies. Detecting onboard clock anomalies requires the ability to monitor clocks in real time, and a Kalman filter can then be utilized to estimate the phase offsets between the satellite clocks and ground clocks. This study, using the difference between the measured and predicted phase offset as a test statistic, sets a threshold for clock anomalies based on the prediction interval approach. Finally the validity of the monitoring method is examined by processing a set of real GNSS data that includes two recent incidents of clock anomalies in GNSS satellites.  相似文献   

7.
GNSS模拟器中频调制卡设计与实现   总被引:1,自引:0,他引:1  
GNSS(Global Navigation Satellite System)信号模拟器能够根据用户所设置的GNSS系统和信号形式、载体动态和环境参数,精确模拟出载体收到的卫星信号,这为GNSS系统级仿真试验和接收机的测试提供一种高效的工具.主要研究兼容多系统多频点的卫星信号模拟器中频信号发生器和数字信号处理技术,提出了数字合路与功率控制的方法和信号相位精确模拟的途径;在基于PCIE+DSP+FPGA+DAC架构的中频板卡上完成了与PC通信、波形控制参数计算和更新、基带信号调制以及模拟中频信号的产生;最后给出了与相应的GNSS接收机的对接结果,验证了所产生中频信号的正确性和信号质量.  相似文献   

8.
Transmission link disturbances and device failure cause global navigation satellite system (GNSS) receivers to miss observations, leading to poor accuracy in real-time kinematic (RTK) positioning. Previously described solutions for this problem are influenced by the length of the prediction period, or are unable to account for changes in receiver state because they use information from previous epochs to make predictions. We propose an algorithm for predicting double difference (DD) observations of obstructed BeiDou navigation system (BDS) GEO satellites. Our approach adopts the first-degree polynomial function for predicting missing observations. We introduce a Douglas-Peucker algorithm to judge the state of the rover receiver to reduce the impact of predictive biases. Static and kinematic experiments were carried out on BDS observations to evaluate the proposed algorithm. The results of our navigation experiment demonstrate that RTK positioning accuracy is improved from meter to decimeter level with fixed ambiguity (horizontal?<?2?cm, vertical?<?18?cm). Horizontal accuracy is improved by over 50%, and the vertical accuracies of the results of the static and kinematic experiments are increased by 47% and 27% respectively, compared with the results produced by the classical approach. Though as the baseline becomes longer, the accuracy is weakened, our predictive algorithm is an improvement over existing approaches to overcome the issue of missing data.  相似文献   

9.
在全球导航卫星系统(GNSS)信号质量监测及GNSS射频(RF)信号模拟器测试等应用中,有用信号功率往往远高于噪声功率。针对二进制相位移位键控(BPSK)和二进制偏移载波(BOC)调制信号,首次研究了这种强信号条件下接收机带限滤波、采样和量化(BSQ)引起的相关损耗。首先分析了不考虑量化作用时由滤波和采样引起的损耗;然后分析了不考虑前端滤波时由量化和采样引起的损耗,推导了相关损耗的解析表达式并得到了量化器的最佳量化间隔;最后,对于滤波、采样、量化共同作用引起的损耗,采用蒙特卡罗方法仿真分析了GPS L1 C/A信号在不同滤波带宽和量化比特数下的归一化相关功率,探讨了根据仿真结果拟合相关损耗解析表达式的方法以简化分析。   相似文献   

10.
Advances in signal processing techniques contributed to the significant improvements of GNSS receiver performance in dense multipath environments and created the opportunities for a new category of high-sensitivity GNSS (HS-GNSS) receivers that can provide GNSS location services in indoor environments. The difficulties in improving the availability, reliability, and accuracy of these indoor capable GNSS receivers exceed those of the receivers designed for the most hostile urban canyon environments. The authors of this paper identified the vector tracking schemes, signal propagation statistics, and parallel processing techniques that are critical to a robust HS-GNSS receiver for indoor environments and successfully incorporated them into a fully functional high-sensitivity software receiver. A flexible vector-based receiver architecture is introduced to combine these key indoor signal processing technologies into GSNRx-hs™ – the high sensitivity software navigation receiver developed at the University of Calgary. The resulting receiver can perform multi-mode vector tracking in indoor environment at various levels of location and timing uncertainties. In addition to the obvious improvements in time-to-first-fix (TTFF) and signal sensitivity, the field test results in indoor environments surrounded by wood, glass, and concrete showed that the new techniques effectively improved the performance of indoor GNSS positioning. With fine GNSS timing, the proposed receiver can consistently deliver indoor navigation solution with the horizontal accuracy of 2–15 m depending on the satellite geometry and the indoor environments. If only the coarse GNSS timing is available, the horizontal accuracy of the indoor navigation solution from the proposed receiver is around 30 m depending on the coarse timing accuracy, the satellite geometry, and the indoor environments. From the preliminary field test results, it has been observed that the signal processing sensitivity is the dominant factor on the availability of the indoor navigation solution, while the GNSS timing accuracy is the dominant factor on the accuracy of the indoor navigation solution.  相似文献   

11.
    
在高轨环境下,由于卫星信号传播链路复杂、损耗衰减较大、信号强度不均匀给全球导航卫星系统(GNSS)应用带来新问题。本文建立了GNSS信号从发射端到高轨航天器接收终端的传播链路模型。通过全链路模拟和等价增益仿真,得到了高轨航天器接收信号强度的分布规律。在此基础上,比较分析了GNSS双星座、三星座和四星座联合导航系统的可用性,为高轨航天器GNSS信号特性分析、多模接收机的灵敏度选择、捕获跟踪算法的设计等工程应用提供理论参考。  相似文献   

12.
卫星导航终端产品测试可分为室内模拟测试和实际信号测试,室内模拟测试信号与实际使用环境有较大差别,不能完全反映实际使用效果;而实际信号测试成本高,重复性较差。为了解决上述测试方法中的不足,本文提出了一种既可实现实际信号的采集,又可在相同环境下反复回放,进而能够高效完成导航终端产品实际使用性能测试方法。本方法基于全球导航卫星系统信号采集回放设备,搭建了包括测试车、实时动态差分基准站、实时动态差分流动站接收机、惯导单元、导航天线等设备的动态跑车测试系统,采集实际信号并在微波暗室中回放,以测试接收机的各项性能指标,为产品定型和性能比较提供参考依据。  相似文献   

13.
卫星导航终端产品测试可分为室内模拟测试和实际信号测试,室内模拟测试信号与实际使用环境有较大差别,不能完全反映实际使用效果;而实际信号测试成本高,重复性较差。为了解决上述测试方法中的不足,本文提出了一种既可实现实际信号的采集,又可在相同环境下反复回放,进而能够高效完成导航终端产品实际使用性能测试方法。本方法基于全球导航卫星系统信号采集回放设备,搭建了包括测试车、实时动态差分基准站、实时动态差分流动站接收机、惯导单元、导航天线等设备的动态跑车测试系统,采集实际信号并在微波暗室中回放,以测试接收机的各项性能指标,为产品定型和性能比较提供参考依据。  相似文献   

14.
The possibility to access undifferenced and uncombined Global Navigation Satellite System (GNSS) measurements on smart devices with an Android operating system allows us to manage pseudorange and carrier-phase measurements to increase the accuracy of real-time positioning. The goal is to perform real-time kinematic network positioning with smartphones, evaluating the positioning accuracy regarding an external mass-market device. The positioning of Samsung Galaxy S8+ and Huawei P10 plus smartphones was performed using a dedicated tool developed by the authors, considering a continuous operating reference station (CORS) network with a mean inter-station distance of about 50?km. The same positioning technique was also applied to an external GNSS low-cost single-frequency receiver (u-blox EVK-M8T) to compare performance between the receiver and antenna embedded in the previous smartphones and this low-cost receiver coupled with a mass-market antenna (Garmin GA38). Attention was also focused on the phase ambiguity resolution, that it is still a challenging aspect for mass-market devices: even if the two smartphones provide slightly different results, the accuracy obtainable today is greater than 60?cm with a precision of few centimetres in real-time, if a CORS network is available. For real-time applications using portable devices, decimetre-level accuracy is sufficient for many applications, such as rapid mapping and search and rescue activities: these results will open new frontiers in terms of real-time positioning with portable low-cost devices.  相似文献   

15.
Continuous and timely real-time satellite orbit and clock products are mandatory for real-time precise point positioning (RT-PPP). Real-time high-precision satellite orbit and clock products should be predicted within a short time in case of communication delay or connection breakdown in practical applications. For prediction, historical data describing the characteristics of the real-time orbit and clock can be used as the basis for performing the prediction. When historical data are scarce, it is difficult for many existing models to perform precise predictions. In this paper, a linear regression model is used to predict clock products. Seven-day GeoForschungsZentrum (GFZ) final clock products sampled at 30 s are used to analyze the characteristics of GNSS clocks. It is shown that the linear regression model can be used as the prediction model for the satellite clock products. In addition, the accuracy of the clock prediction for different satellites are analyzed using historical data with different periods (such as 2 and 10 epochs). Experimental results show that the accuracy of the clock with the linear regression prediction model using historical data with 10 epochs is 1.0 ns within 900 s. This is higher accuracy than that achieved using historical data of 2 epochs. Finally, the performance analysis for real-time kinematic precise point positioning (PPP) is provided using GFZ final clock prediction results and state space representation (SSR) clock prediction results when communication delay or connection breakdown occur. Experimental results show that the positioning accuracy without prediction is better than that with prediction in general, whether using the final clock product or the SSR clock product. For the final clock product, the positioning accuracy in the north (N), east (E), and up (U) directions is better than 10.0 cm with all visible GNSS satellites with prediction. In comparison, the 3D positioning accuracy of N, E, and U directions with visible GNSS satellites whose prediction accuracy is better than 0.1 ns using historical data of 10 epochs is improved from 15.0 cm to 7.0 cm. For the SSR clock product, the positioning accuracy of N, E, and U directions is better than 12.0 cm with visible GNSS satellites with prediction. In comparison, the 3D positioning accuracy of N, E, and U directions with visible GNSS satellites whose prediction accuracy is better than 0.1 ns using historical data of 10 epochs is improved from 12.0 cm to 9.0 cm.  相似文献   

16.
Processing data from Global Navigation Satellite Systems (GNSS) always requires time synchronization between transmitter and receiver clocks. Due to the limited stability of the receiver’s internal oscillator, the offset of the receiver clock with respect to the system time has to be estimated for every observation epoch or eliminated by processing differences between simultaneous observations. If, in contrast, the internal oscillator of the receiver is replaced by a stable atomic clock one can try to model the receiver clock offset, instead of estimating it on an epoch-by-epoch basis. In view of the progress made in the field of high-precision frequency standards we will investigate the technical requirements for GNSS receiver clock modeling at the carrier phase level and analyze its impact on the precision of the position estimates.  相似文献   

17.
高轨空间中全球卫星导航系统(GNSS)信号可用性严重变差,对GNSS接收机的跟踪性能提出更高要求。利用GNSS信号传播链路模型分析了高轨空间GNSS信号特点,对比了标量跟踪和矢量跟踪这2类典型跟踪环路在高轨空间的适用性,进而设计了一种适用于高轨空间的GNSS矢量跟踪方案。该方案通过估计载噪比确定量测噪声方差阵,以对各通道量测信息进行加权处理来获得高精度的导航参数;并根据高轨航天器的动态性能确定过程噪声方差阵,利用轨道动力学模型对导航参数进行一步预测,从而实现了对各通道信号跟踪参数的准确预测及联合跟踪。仿真验证表明:所设计的跟踪方案可实现高轨空间中强信号对弱信号的辅助跟踪,从而提高了高轨空间中弱信号的跟踪性能及可用性,并对中断信号具有一定的桥接能力。   相似文献   

18.
基于DDMR辅助的GNSS-R载波相位差测高方法   总被引:1,自引:0,他引:1  
提出了一种基于时延-多普勒映射接收机(DDMR,Delay-Doppler Map Receiver)辅助的载波相位差提取方法,给出了系统结构及信号处理方法.该方法将DDMR中所观测到的码相位差作为直射信号与反射信号的码相位延时量,将完成跟踪的直射信号扩频码进行对应的延时用于完成对反射信号的开环码跟踪.该方法省去了码相位延时搜索的过程,且可以准确地对反射信号扩频码进行同步.为了验证系统的可行性及实际性能,进行了针对水面高度测量的岸基试验并给出了试验结果.岸基试验证明采用该方法的GNSS-R(Global Navigation Satellite System Reflection)接收机可以稳定地对反射信号进行跟踪并提取直射与反射信号的载波相位差,测高精度约为2.5 cm,经过0.5 s的数据平均后精度可达0.6 cm.   相似文献   

19.
GNSS RTK技术以其高精度、高效率、实时性的优点,被广泛应用于航空航天等领域.目前双频RTK技术已非常成熟并且应用较广.相比于双频,单频GNSS RTK在数据质量控制、定位误差处理等方面存在难点.因此单频RTK服务精度可能会受到限制,其定位性能有待研究.本文基于扩展卡尔曼滤波模型,通过MLAMBDA模糊度搜索方法和Ratio检验法,结合实测数据,对比分析BDS,GPS,BDS/GPS三种模式下的单频RTK定位性能.实验证明在静态场景下,三种模式的单频RTK定位精度都在厘米级,可满足高精度定位需求;动态场景下三种模式的模糊度固定率都在70%以上,可满足日常定位需求.在静态及动态应用场景下,北斗的模糊度固定率最高,模糊度解算所用时间短,能实现快速RTK定位.   相似文献   

20.
Global Navigation Satellite System’s (GNSS) positioning calculation is prone to ionospheric errors. Single frequency GNSS users receive ionospheric corrections through broadcast ionospheric models. Therefore, the accuracy of ionospheric models must be validated based on various geographic and geomagnetic conditions. In this work, an attempt is made to validate NeQuick2 electron density (Ne) using multiple sources of space-based and ground-based data at the Arabian Peninsula and for low solar activity conditions. These sources include space-based data from Swarm, DMSP and COSMIC-2 satellite constellations and ground-based data from GNSS receiver and the ionosonde. The period of this study is 1 year from October 2019 to September 2020. Analysis shows that the agreement between NeQuick2 and experimental Ne close to the peak density height depends on seasons and time of the day with the largest errors found in Autumn and during the daytime. NeQuick2 generally overestimates Ne during the daytime. During the early morning and evening hours, Ne estimates seem to be fairly accurate with slight underestimation in Winter and Spring. Estimation of slab thickness by NeQuick2 is found to be close to the values calculated using collocated ionosonde and GNSS receiver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号