首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
基于增强型单频GPS的高精度星间相对定位样条方法   总被引:1,自引:0,他引:1  
为了实现高精度的分布式SAR星间相对定位,提出了一种基于增强型单频GPS的相对定位样条方法,即在单频GPS测量信息的基础上,增加星间距离观测信息,并结合相对位置参数的连续特性,建立了相对定位的样条模型,最后利用最小二乘法进行参数估计.仿真结果表明,新方法不仅能大大提高相对定位精度,而且还能有效地减少固定整周模糊度所需的历元.最后的理论分析证明了仿真的正确性.   相似文献   

2.
单频RTK技术在高精度测绘、无人驾驶等领域有着广泛应用,针对单频RTK的动态定位精度量化问题,提出了一种易于操作、适用地域广、不需要额外辅助设备的单频RTK动态精度检测法。首先,在地面建立基准直线; 然后,沿基准直线以走停模式测量RTK静态、动态组合数据,将静态数据利用整体最小二乘法拟合得到检核直线,并以此为参考评定动态定位精度; 最后,进行可靠性检验。精度评定时,以动态点到检核直线的平均偏离作为动态精度指标,采用间距误差作为检验所提方法可靠性的指标。实验结果表明,所提方法具有较高的可靠性,可以准确量化单频RTK约2~5 cm的动态定位精度。   相似文献   

3.
单频GPS动态相对定位的模糊度逼近/搜索解法   总被引:1,自引:0,他引:1  
针对目前实时动态定位(RTK)中常用搜索解法可靠度不高的缺点,利用各历元诸双差方程所形成的法方程,对其进行解耦处理以便于实时计算.在此基础上综合了逼近、搜索两种解法各自的局部优势,构成了逼近/搜索的联合解法.实际测试表明,该算法在单频全球定位系统(GPS)载波相位差分的动态相对定位过程中,用2~3min的时间即可可靠地在航解算出整周模糊度.  相似文献   

4.
两步法快速解算编队卫星GPS模糊度   总被引:1,自引:1,他引:0  
为克服卫星编队飞行实时相对定位中双频模糊度解算速度慢的缺点,结合扩展Kalman滤波(EKF,Extended Kalman Filter),首先采用少数个历元(如10个)相位平滑伪距相对定位结果与 L6的平均值对滤波初始化,再根据两步法解算双频模糊度,即先解算并正确固定宽巷模糊度,获得较准确的基线分量估值,然后采用选权拟合方法,将基线分量作为约束条件解算并固定双频模糊度.仿真算例计算结果表明,当宽巷模糊度正确固定后,编队卫星间相对定位误差在5cm以内,两步法可以在较短时间(约3min)内固定双频模糊度,为精确解算编队卫星的相对状态提供保障.  相似文献   

5.
星基增强系统(SBAS)通过GEO卫星转发SBAS电文实现对GNSS服务性能的提升,以满足民航用户不同飞行阶段的导航需求,因此,合理有效的电文内容及播发时序设计是系统实现高质量服务的重要保证。为提高电文编排的灵活性,避免固定时序填补空余电文引起的播发资源浪费,提出了一种SBAS电文时序动态编排算法,在满足国际标准要求的前提下,综合利用SBAS电文龄期和最大播发间隔实现待播发电文的自动选择。利用NTMF实测数据对当前各主要SBAS的电文进行了特性分析,对所提方法的单双频SBAS电文编排效果进行了评估。结果表明:所提算法可保证电文时序符合国际标准要求,实现了重要电文的优先播发,将空余时隙进行动态分配实现了各类型电文播发间隔的近等比例缩短。与固定时序相比,单频SBAS完好性电文播发间隔缩短约15.0%,首次定位时间缩短约8%,双频SBAS电文首次定位时间缩短约6.5%;与固定时序的BDSBAS B1C电文相比,完好性服务能力提升约14.7%,首次定位时间缩短约16.7%。所提算法有效提升了SBAS电文播发的播发效率,实现了SBAS播发资源的100%有效利用。   相似文献   

6.
基于北斗卫星导航系统(BDS)和全球定位系统(GPS)实测电离层穿刺点(IPP)数据,结合国际参考电离层(IRI)经验模型历史数据,提出一种对区域二维电离层总电子含量(TEC)进行高精度建模的方法.针对缺乏穿刺点的区域内短时间电离层建模时精度较低且各时段穿刺点空间分布不同的问题,该方法使用IRI模型在建模区域内均匀添加虚拟穿刺点数据,并根据与实测穿刺点的距离,使用构造的权重计算公式赋予其动态权重值,通过加权最小二乘法进行球谐模型参数解算.与欧洲定轨中心(CODE)发布的全球电离层图(GIM)进行数据比对发现,相对于只使用BDS/GPS实测穿刺点数据的建模方法,利用本文建模方法计算获得的垂直总电子含量(VTEC)值对缺乏实测穿刺点的区域精度有明显的提升.   相似文献   

7.
全球导航卫星系统/惯性导航系统(GNSS/INS)组合导航可以提供连续、高精度的位置、速度、姿态信息,被广泛应用于无人机的状态估计。其中滤波算法的构建是其组合关键。不同组合导航的模式会对导航定位结果产生相应的影响。针对直接法和间接法这2种常见的组合模式,分别构建了基于扩展卡尔曼滤波(EKF)的全球定位系统/惯性导航系统(GPS/INS)松组合模式,并将其运用于不同飞行场景下无人机(UAV)的实时动态状态估计。仿真场景以及实际数据验证结果表明,间接法在精度和稳定性方面优于直接法,直接法在滤波计算速率方面优于间接法。因此,当系统具有较高的计算性能,且面向高精度的应用情况下可选择间接法作为无人机导航的技术方案;对于快速求解但精度要求不高的应用情况下,选择直接法作为无人机导航的技术方案可以在一定程度上降低系统的成本。   相似文献   

8.
为了组合导航的载波相位模糊度固定,将目前在GPS中常用的模糊度固定方法--最小二乘降相关平差(LAMBDA)法直接应用于GPS/Galileo组合模糊度固定,发现其搜索空间的确定方法并不能很好地适应GPS/Galileo组合中模糊度维数较高的情况。通过对常规LAMBDA搜索空间确定方法的分析比较,在传统方法的基础上提出了一种专门针对高维模糊度固定的搜索空间确定方法--修正法确定模糊度搜索空间。通过对修正法进行仿真试验,证明该方法能保证在GPS/Galileo组合定位模式下实际备选模糊度个数基本与预先设定的备选模糊度个数一致,进而能在不降低模糊度固定成功率的基础上有效提高LAMBDA模糊度固定的搜索效率,其性能优于传统的模糊度搜索空间确定方法。  相似文献   

9.
对目前低轨卫星实时定位的方法进行了研究,现在通常采用GPS定位,使用广播星历和普通晶振,实时定位精度一般在10m以内,不能满足高精度实时定位的需求。IGS组织在全球范围内对GPS跟踪分析,生成精密星历、精密钟差产品、按SSR格式的广播星历和钟差修正产品并在网上发布。对这些IGS产品进行了调查,提出在现有测控支持情况下,可以通过高密度上注SSR信息流实现在轨高精度定位。以某型号低轨微小卫星在轨导航增强载荷为应用背景,用IGS03产品中的1057和1058数据对双频GPS接收机的星历和钟差进行修正,采用递推最小二乘估计和LAMDA模糊度固定过对载波相位和伪距信息进行处理,在短时间内获得亚米级定位结果。  相似文献   

10.
基于GNSS载波相位观测值的实时动态授时,可有效规避PPP授时对实时精密轨道和钟差产品的依赖问题,对短距离动、静态高精度时间用户具有重要意义。为了更好地验证GNSS实时动态授时性能,基于中国科学院国家授时中心时间频率资源和三个GNSS跟踪站长达2个月的观测数据,以GPS系统为例开展了授时试验。与事后PPP时间传递相比,实时动态授时结果差异STD优于0.15ns;与光纤双向时间传递结果相比,实时动态授时结果差异STD优于0.5ns。试验表明,GNSS实时动态授时精度能够达到亚纳秒量级,可为下一步推广应用提供重要参考。  相似文献   

11.
Since China’s BeiDou satellite navigation system (BDS) began to provide regional navigation service for Asia-Pacific region after 2012, more new generation BDS satellites have been launched to further expand BDS’s coverage to be global. In this contribution, precise positioning models based on BDS and the corresponding mathematical algorithms are presented in detail. Then, an evaluation on BDS’s real-time dynamic positioning and navigation performance is presented in Precise Point Positioning (PPP), Real-time Kinematic (RTK), Inertial Navigation System (INS) tightly aided PPP and RTK modes by processing a set of land-borne vehicle experiment data. Results indicate that BDS positioning Root Mean Square (RMS) in north, east, and vertical components are 2.0, 2.7, and 7.6?cm in RTK mode and 7.8, 14.7, and 24.8?cm in PPP mode, which are close to GPS positioning accuracy. Meanwhile, with the help of INS, about 38.8%, 67.5%, and 66.5% improvements can be obtained by using PPP/INS tight-integration mode. Such enhancements in RTK/INS tight-integration mode are 14.1%, 34.0%, and 41.9%. Moreover, the accuracy of velocimetry and attitude determination can be improved to be better than 1?cm/s and 0.1°, respectively. Besides, the continuity and reliability of BDS in both PPP and RTK modes can also be ameliorated significantly by INS during satellite signal missing periods.  相似文献   

12.
Global navigation satellite system (GNSS)-based attitude determination has been widely adopted in a wide variety of terrestrial, sea, air, and space applications. Recently, the emergence of commercial multi-GNSS common-clock receivers has brought new opportunities for high-precision GNSS-based attitude determination with single-differenced (SD) model. However, the key requirement of using this approach is the accurate estimation of the troublesome line bias (LB) in real-time. In this contribution, we propose a particle filter-based real-time phase LB estimation approach that apply to SD model with single-system single-frequency observations from common-clock receiver. We first analyzed the relationship between the integer ambiguity ratio value and the phase LB. It is proved that the accuracy of a given phase LB value can be qualified by the related ambiguity resolution ratio value, and the normalized ratio value can therefore be used to represent the likelihood function of observations. Then, we presented the particle filter-based real-time phase LB estimation procedure, and assessed its performance using GPS L1/BDS B1I observations from two datasets collected with different types of common-clock receivers in terms of the accuracy and convergence time of phase LB estimation, the computation load, and the positioning and attitude determination accuracy with respect to the double-differenced (DD) model. Experimental results demonstrated that the phase LB could be accurately estimated with short convergence time (generally within 15 epochs). Moreover, compared with the classical DD approach, the particle filter-based SD approach delivers comparable positioning root-mean-square (RMS) errors in the North and East components but significantly smaller RMS errors in the Up component. Accordingly, the achievable yaw accuracy is comparable whereas the pitch accuracy is remarkably improved. The improvements of positioning accuracy in the Up component and pitch accuracy are approximately 35.7 % to 63.7 %, and 33.3 % to 63.1 %, respectively. Additionally, the single-epoch computation time with our particle filter-based SD approach is generally 0.08 s, which is obviously larger than the DD approach but could still meet the requirements of real-time applications below 10 Hz sampling.  相似文献   

13.
Transmission link disturbances and device failure cause global navigation satellite system (GNSS) receivers to miss observations, leading to poor accuracy in real-time kinematic (RTK) positioning. Previously described solutions for this problem are influenced by the length of the prediction period, or are unable to account for changes in receiver state because they use information from previous epochs to make predictions. We propose an algorithm for predicting double difference (DD) observations of obstructed BeiDou navigation system (BDS) GEO satellites. Our approach adopts the first-degree polynomial function for predicting missing observations. We introduce a Douglas-Peucker algorithm to judge the state of the rover receiver to reduce the impact of predictive biases. Static and kinematic experiments were carried out on BDS observations to evaluate the proposed algorithm. The results of our navigation experiment demonstrate that RTK positioning accuracy is improved from meter to decimeter level with fixed ambiguity (horizontal?<?2?cm, vertical?<?18?cm). Horizontal accuracy is improved by over 50%, and the vertical accuracies of the results of the static and kinematic experiments are increased by 47% and 27% respectively, compared with the results produced by the classical approach. Though as the baseline becomes longer, the accuracy is weakened, our predictive algorithm is an improvement over existing approaches to overcome the issue of missing data.  相似文献   

14.
The Quasi-Zenith Satellite System (QZSS) established by the Japan Aerospace Exploration Agency mainly serves the Asia-Pacific region and its surrounding areas. Currently, four in-orbit satellites provide services. Most users of GNSS in the mass market use single-frequency (SF) receivers owing to the low cost. Therefore, it is meaningful to analyze and evaluate the contribution of the QZSS to SF precise point positioning (PPP) of GPS/BDS/GLONASS/Galileo systems with the emergence of GNSS and QZSS. This study compares the performances of three SF PPP models, namely the GRoup and PHase Ionospheric Correction (GRAPHIC) model, GRAPHIC with code observation model, and an ionosphere-constrained model, and evaluated the contribution of the QZSS to the SF PPP of GPS/BDS/GLONASS/Galileo systems. Moreover, the influence of code bias on the SF PPP of the BDS system is also analyzed. A two-week dataset (DOY 013–026, 2019) from 10 stations of the MGEX network is selected for validation, and the results show that: (1) For cut-off elevation angles of 15, 20, and 25°, the convergence times for the static SF PPP of GLONASS + QZSS are reduced by 4.3, 30.8, and 12.7%, respectively, and the positioning accuracy is similar compared with that of the GLONASS system. Compared with the BDS single system, the convergence times for the static SF PPP of BDS + QZSS under 15 and 25° are reduced by 37.6 and 39.2%, the horizontal positioning accuracies are improved by 18.6 and 14.1%, and the vertical components are improved by 13.9 and 21.4%, respectively. At cut-off elevation angles of 15, 20, and 25°, the positioning accuracy and precision of GPS/BDS/GLONASS/Galileo + QZSS is similar to that of GPS/BDS/GLONASS/Galileo. And the convergence times are reduced by 7.4 and 4.3% at cut-off elevation angles of 20 and 25°, respectively. In imitating dynamic PPP, the QZSS significantly improves the positioning accuracy of BDS and GLONASS. However, QZSS has little effect on the GPS-only, Galileo-only and GPS/BDS/GLONASS/Galileo. (2) The code bias of BDS IGSO and MEO cannot be ignored in SF PPP. In static SF PPP, taking the frequency band of B1I whose multipath combination is the largest among the frequency bands as an example, the vertical component has a systematic bias of approximately 0.4–1.0 m. After correcting the code bias, the positioning error in the vertical component is lower than 0.2 m, and the positioning accuracy in the horizontal component are improved accordingly. (3) The SF PPP model with ionosphere constraints has a better convergence speed, while the positioning accuracy of the three models is nearly equal. Therefore the GRAPHIC model can be used to get good positioning accuracy in the absence of external ionosphere products, but its convergence speed is slower.  相似文献   

15.
To ensure the compatibility and interoperability with modernized GPS, Galileo satellites are capable of broadcasting navigation signals on carrier phase frequencies that overlap with GPS, i.e., GPS/Galileo L1-E1/L5-E5a. Moreover, the GPS/Galileo L2-E5b signals have different frequencies with wavelength differences smaller than 4.2?mm. Such overlapping and narrowly spaced signals between GPS and Galileo bring the opportunity to use the tightly combined double-differenced (DD) model for precise real-time kinematic (RTK) positioning, resulting in improved performance of ambiguity resolution and positioning with respect to the classical standard or loosely combined DD model. In this paper, we focus on the model and performance assessment of tightly combined GPS/Galileo L1-E1/L2-E5b/L5-E5a RTK for short and long baselines. We first investigate the tightly combined GPS/Galileo DD observational model for both short and long baselines with simultaneously considering the GPS/Galileo overlapping and non-overlapping frequencies. Particularly, we introduce a reparameterization approach to solve the rank deficiency that caused by the correlation between the DISB parameters and the DD ionospheric parameters for both overlapping and non-overlapping frequencies. Then we present performance assessment for the tightly combined GPS/Galileo RTK model with real-time estimation of the differential inter-system bias (DISB) parameters for short and long baselines in terms of ratio value, ambiguity dilution of precision (ADOP), ambiguity conditional number, decorrelation number, search count, empirical success rate, time-to-first-fix (TTFF), and positioning accuracy. Results from both static and kinematic experiments demonstrated that compared to the loosely combined model, the tightly combined model can deliver improved performance of ambiguity resolution and precise positioning with different satellite visibility. For the car-driven short baseline experiment with 10° elevation cut-off angle, the tightly combined model can not only significantly increase the ratio value by approximately 27.5% (from 16.0 to 20.4), but also reduce the ambiguity ADOP, the conditional number, and the search count in LAMBDA by approximately 22.2% (from 0.027 to 0.021 cycles), 14.9% (from 199.2 to 169.6), and 25.4% (from 150.1 to 112.0), respectively. Comparable decorrelation number, empirical success rate, and positioning accuracy are also obtained. For the car-driven long baseline experiment, it is also observed that the ambiguity resolution performance in terms of the ratio value, the decorrelation number, the condition number, and the search count are significantly improved by approximately 18.5% (from 2.7 to 3.2), 22.0% (from 0.186 to 0.227), 55.9% (from 937.6 to 413.7), and 10.3% (from 43.8 to 39.3), respectively. Moreover, comparable ADOP, empirical success rate, and positioning accuracy are obtained as well. Additionally, the TTFF can be reduced (from 54.1 to 51.8 epochs with 10° elevation cut-off angle) as well from the results of static experiments.  相似文献   

16.
Due to the limited number and uneven distribution globally of Beidou Satellite System (BDS) stations, the contributions of BDS to global ionosphere modeling is still not significant. In order to give a more realistic evaluation of the ability for BDS in ionosphere monitoring and multi-GNSS contributions to the performance of Differential Code Biases (DCBs) determination and ionosphere modeling, we select 22 stations from Crustal Movement Observation Network of China (CMONOC) to assess the result of regional ionospheric model and DCBs estimates over China where the visible satellites and monitoring stations for BDS are comparable to those of GPS/GLONASS. Note that all the 22 stations can track the dual- and triple-frequency GPS, GLONASS, and BDS observations. In this study, seven solutions, i.e., GPS-only (G), GLONASS-only (R), BDS-only (C), GPS + BDS (GC), GPS + GLONASS (GR), GLONASS + BDS (RC), GPS + GLONASS + BDS (GRC), are used to test the regional ionosphere modeling over the experimental area. Moreover, the performances of them using single-frequency precise point positioning (SF-PPP) method are presented. The experimental results indicate that BDS has the same ionospheric monitoring capability as GPS and GLONASS. Meanwhile, multi-GNSS observations can significantly improve the accuracy of the regional ionospheric models compared with that of GPS-only or GLONASS-only or BDS-only, especially over the edge of the tested region which the accuracy of the model is improved by reducing the RMS of the maximum differences from 5–15 to 2–3 TECu. For satellite DCBs estimates of different systems, the accuracy of them can be improved significantly after combining different system observations, which is improved by reducing the STD of GPS satellite DCB from 0.243 to 0.213, 0.172, and 0.165 ns after adding R, C, and RC observations respectively, with an increment of about 12.3%, 29.4%, and 32.2%. The STD of GLONASS satellite DCB improved from 0.353 to 0.304, 0.271, and 0.243 ns after adding G, C, and GC observations, respectively. The STD of BDS satellite DCB reduced from 0.265 to 0.237, 0.237 and 0.229 ns with the addition of G, R and GR systems respectively, and increased by 10.6%, 10.4%, and 13.6%. From the experimental positioning result, it can be seen that the regional ionospheric models with multi-GNSS observations are better than that with a single satellite system model.  相似文献   

17.
Precise point positioning (PPP) usually takes about 30?min to obtain centimetre-level accuracy, which greatly limits its application. To address the drawbacks of convergence speed and positioning accuracy, we develop a PPP model with integrated GPS and BDS observations. Based on the method, stations with global coverage are selected to estimate the fractional cycle bias (FCB) of GPS and BDS. The short-term and long-term time series of wide-lane (WL) FCB, and the single day change of narrow-lane (NL) FCB are analysed. It is found that the range of GPS and BDS non-GEO (IGSO and MEO) WL FCB is stable at up to a 30-day-time frame. At times frame of up to 60?days, the stability is reduced a lot. Whether for short-term or long-term, the changes in the BDS GEO WL FCB are large. Moreover, BDS FCB sometimes undergoes a sudden jump. Besides, 17 and 10 stations were used respectively to investigate the convergence speed and positioning errors with six strategies: BDS ambiguity-float PPP (Bfloat), GPS ambiguity-float PPP (Gfloat), BDS/GPS ambiguity-float PPP (BGfloat), BDS ambiguity-fixed PPP (Bfix), GPS ambiguity-fixed (Gfix), and BDS/GPS ambiguity-fixed (BGfix). The average convergence speed of the ambiguity-fixed solution is greatly improved compared with the ambiguity-float solution. In terms of the average convergence time, the Bfloat is the longest and the BGfix is the shortest among these six strategies. Whether for ambiguity-float PPP or ambiguity-fixed PPP, the convergence reduction time in three directions for the combined system is the largest compared with the single BDS. The average RMS value of the Bfix in three directions (easting (E), northing (N), and up (U)) are 2.0?cm, 1.5?cm, and 5.9?cm respectively, while those of the Gfix are 0.8?cm, 0.5?cm, and 1.7?cm. Compared with single system, the BDS/GPS combined ambiguity-fixed system (BGfix) has the fastest convergence speed and the highest accuracy, with average RMS as 0.7?cm, 0.5?cm, and 1.9?cm for the E, N, U components, respectively.  相似文献   

18.
By using the observation data and products of precise obit and clock offset from Multi-GNSS Experiment (MGEX) of the International GNSS Service (IGS) and GNSS Research Centre, Curtin University in this paper, the positioning performance of BDS/QZSS satellite navigation system has been analyzed and evaluated in aspects of the quantity of visible satellites, DOP value, multipath effect, signal-to-noise ratio, static PPP and kinematic PPP. The analysis results show that compared to BDS single system when the cutoff angle are 30°and 40°, the DOP value of BDS/QZSS combined system has decreased above 20%, and the quantity of visible satellites increased about 16–30% respectively, because of the improved spatial geometric configuration. The magnitude of satellite multipath effect of BDS system shows the trend of MEO?>?IGSO?>?GEO, which is consistent with that of QZSS satellite system, as the constellation structure of the two systems is similar. The variation tendencies of signal-to-noise ratio with respect to elevation angle of the two systems are almost the same at all frequencies, showing that at the same elevation angle the signal-to-noise ratio of MEO satellites is higher than that of IGSO satellites, as the higher obit is the lower transmitting power is obtained. For having a specially designed obit, the variation of signal-to-noise ratio of BDS system is more stable. However, the magnitude of signal-to-noise ratio of QZSS system appears the trend of frequency 3?>?frequency 2?>?frequency 1. The static PPP performance of the BDS/QZSS combination system has been improved more significantly than the BDS single system in E, N and U directions. When the cutoff angle are at 7°, 15° and 30°, the PPP accuracy is increased about 25–34% in U direction, 10–13% and 23–34% in E and N directions respectively. When the elevation angle is large (40°), compared to BDS single system at lower elevation angles (7° and 15°) the PPP accuracy of the BDS/QZSS combination system is improved above 30% in U direction. In kinematic PPP performance, compared to BDS single system, the accuracy, availability and reliability of the BDS/QZSS combination system has been improved too, especially at large elevation angles (30° and 40°), the kinematic PPP accuracy in E and U directions has been improved about 10–50%, and above 50% in U direction. It can be concluded that the combination with QZSS system can improve the positioning accuracy, reliability and stability of BDS system. In the future, with the improvement of the satellite construction of Japan’s QZSS system and the global networking of China’s BDS satellites, the QZSS satellites will contribute greatly to improve the positioning accuracy, reliability, availability and stability of GNSS systems in areas such as cities, mountains, densely-packed buildings and severely covered areas in Asian-Pacific region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号