首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
本文综述了日冕瞬变现象的主要观测特征及其理论模型.日冕瞬变是从太阳日冕中向行星际空间大量抛出物质的过程,每次事件可有5×1015克的物质在103秒的时间内以约500公里/秒的典型速度被驱动流到日球中.日冕瞬变与太阳耀斑和爆发日珥事件有密切的相关性.作为一种新的太阳活动现象,近年来对日冕瞬变提出了许多理论解释.一种数值模拟方法将瞬变看成是由于热力学量或磁力在日冕底部的脉冲增长所产生的结果.许多分析模型认为是由磁环内部的电磁力或外部的磁压力驱动所致,或者是环中磁浮力驱动的结果.考虑到瞬变与耀斑和爆发日珥的相关性,活塞驱动模型认为,瞬变是稠密等离子体喷射,像活塞驱动机制.观测和理论都有待于进一步的研究.   相似文献   

2.
In this work, we present a study of the coronal mass ejection (CME) dynamics using LASCO coronagraph observations combined with in-situ ACE plasma and magnetic field data, covering a continuous period of time from January 1997 to April 2001, complemented by few extreme events observed in 2001 and 2003. We show, for the first time, that the CME expansion speed correlates very well with the travel time to 1 AU of the interplanetary ejecta (or ICMEs) associated with the CMEs, as well as with their preceding shocks. The events analyzed in this work are a subset of the events studied in Schwenn et al. (2005), from which only the CMEs associated with interplanetary ejecta (ICMEs) were selected. Three models to predict CME travel time to Earth, two proposed by Gopalswamy et al. (2001) and one by Schwenn et al. (2005), were used to characterize the dynamical behavior of this set of events. Extreme events occurred in 2001 and 2003 were used to test the prediction capability of the models regarding CMEs with very high LASCO C3 speeds.  相似文献   

3.
A small coronagraph has been placed in orbit to monitor the sun's outer corona from 2.5 to 10.0 solar radii, and five years of nearly continuous synoptic observations have now been completed. Rapid and sensitive image processing techniques have been developed to screen the data for transient phenomena, particularly coronal mass ejections (CMEs). About 50,000 coronal images have been examined, out of a five-year total of 68,000, and a standardized listing of more than 1,200 coronal transients for the period 1979–1982 has been prepared. These data have been analysed in the light of other available information, particularly on conditions in the interplanetary plasma. The dynamical characteristics of the active corona, as they are beginning to emerge from the data, are presented. We find that coronal mass ejections exercise significant influence on the interplanetary solar wind. They are the source of disturbances that are frequent and energetic, that tend to be somewhat focussed, that often reach shock intensity, and that propagate to large heliocentric distances, sometimes causing major geomagnetic storms.  相似文献   

4.
三维磁流体力学(MHD)数值模拟是行星际太阳风研究的重要手段.本文发展了一种由多种观测数据驱动的三维行星际太阳风MHD数值模型.模型的计算区域为0.1AU到1AU附近,使用Lax-Friedrich差分格式在六片网格系统中进行数值求解.边界条件中磁场使用GONG台站观测的光球磁图外推获得,密度通过LASCO观测的白光偏振亮度反演得到,速度根据以上两种观测数据并利用一种基于人工神经网络技术(ANN)的方法得到,温度通过自洽方法根据磁场和密度导出.利用该模型模拟了第2062卡灵顿周(CR2062)时期的行星际太阳风,模拟结果显示出丰富的观测特征,并与OMNI以及Ulysses的实际观测值符合得较好.该模型可用于提供接近真实的行星际太阳风,有助于提高空间天气预报的精度.   相似文献   

5.
Energetic particle signatures of geoeffective coronal mass ejections   总被引:1,自引:0,他引:1  
We have studied statistically associations of moderate and intense geomagnetic storms with coronal mass ejections (CMEs) and energetic particle events. The goal was to identify specific energetic particle signatures, which could be used to improve the predictions of the geoeffectiveness of full and partial halo CMEs. Protons in the range 1–110 MeV from the ERNE experiment onboard SOHO are used in the analysis. The study covers the time period from August 1996 to July 2000. We demonstrate the feasibility of energetic particle observations as an additional source of information in evaluating the geoeffectiveness of full and partial halo CMEs. Based on the observed onset times of solar energetic particle (SEP) events and energetic storm particle (ESP) events, we derive a proxy for the transit times of shocks driven by the interplanetary counterparts of coronal mass ejections from the Sun to the Earth. For a limited number of geomagnetic storms which can be associated to both SEP and ESP signatures, we found that this transit time correlates with the strength of geomagnetic storms.  相似文献   

6.
We study time evolution of an energy spectrum of a proton flux in the range of 47 – 4750 keV for the energeticparticle event occurred on 255 DOY in 1999, which we consider as one of typical diffusive acceleration events associated with interplanetary shocks and irrespective of large X-ray solar flares. Fast enhancement during evolution is found in the range of less than about 0.5 MeV. Our previous numerical simulations using Stochastic Differential Equation method could not show this behavior, although we obtained results showing a power law energy spectrum, which suggesting that energetic particles are accelerated diffusively by shock waves, the first-order Fermi acceleration. We consider that less than 0.5 MeV protons need to exist to explain behavior of the observational energy spectrum and perform numerical simulations in order to investigate proper injection models for this event.  相似文献   

7.
Interplanetary physics study is an important ingredient in space weather research. Considerable progress this aspect has been achieved by the space physics community of China in recent years. This brief report summarizes the latest advances of the interplanetary physics research in China during the period of 2008--2010. This report includes solar corona and solar wind, interplanetary transients, energetic particles, MHD simulation, space plasma, and prediction methods for physical phenomena originating from both solar corona and interplanetary space.   相似文献   

8.
Several methods for CME speed estimation are discussed. These include velocity derivation based on the frequency drifts observed in metric and decametric radio wave data using a range of coronal density models. Coronagraph height–time plots allow measurement of plane-of-sky and expansion speeds. These in turn can enable propagation speeds to be derived from a range of empirical relations. Simple geometric e.g., cone, models can provide propagation velocity estimates for suitable halo or partial halo events. Interplanetary scintillation observations allow speed estimates at large distances from the Sun detecting in particular the deceleration of the faster CMEs. Related interplanetary shocks and the arrival times and speeds of the associated magnetic clouds at Earth can also be considered. We discuss the application of some of these methods to the transit to Earth of a complex CME that originated earlier than 16:54 U.T. on 07-NOV-2004. The difficulties in making velocity estimates from radio observations, particularly under disturbed coronal conditions, are highlighted.  相似文献   

9.
Many interplanetary shock waves have a fast mode MHD wave Mach number between one and two and the ambient solar wind plasma and magnetic field are known to fluctuate. Therefore a weak, fast, MHD interplanetary shock wave propagating into a fluctuating solar wind region or into a solar wind stream will be expected to vary its strength.It is possible that an interplanetary shock wave, upon entering such a region will weaken its strength and degenerate into a fast-mode MHD wave. It is even possible that the shock may dissipate and disappear.A model for the propagation of a solar flare - or CME (Coronal Mass Ejections) - associated interplanetary shock wave is given. A physical mechanism is described to calculate the probability that a weak shock which enters a turbulent solar wind region will degenerate into a MHD wave. That is, the shock would disappear as an entropy-generate entity. This model also suggests that most interplanetary shock waves cannot propagate continuously with a smooth shock surface. It is suggested that the surface of an interplanetary shock will be highly distorted and that parts of the shock surface can degenerate into MHD waves or even disappear during its global propagation through interplanetary space. A few observations to support this model will be briefly described.Finally, this model of shock propagation also applies to corotating shocks. As corotating shocks propagate into fluctuating ambient solar wind regions, shocks may degenerate into waves or disappear.  相似文献   

10.
Significant progress has been made by Chinese scientists in research of interplanetary physics during the recent two years (2018-2020). These achievements are reflected at least in the following aspects:Activities in solar corona and lower solar atmosphere; solar wind and turbulence; filament/prominence, jets, flares, and radio bursts; active regions and solar eruptions; coronal mass ejections and their interplanetary counterparts; other interplanetary structures; space weather prediction methods; magnetic reconnection; Magnetohydrodynamic (MHD) numerical modeling; solar energetic particles, cosmic rays, and Forbush decreases; machine learning methods in space weather and other aspects. More than one hundred and forty papers in the academic journals have been published in these research directions. These fruitful achievements are obtained by Chinese scholars in solar physics and space physics either independently or through international collaborations. They greatly improve people's understanding of solar activities, solar eruptions, the corresponding space weather effects, and the Sun-Earth relations. Here we will give a very brief review on the research progress. However, it must be pointed out that this paper may not completely cover all achievements in this field due to our limited knowledge.   相似文献   

11.
Advances in modeling gradual solar energetic particle events   总被引:1,自引:0,他引:1  
Solar energetic particles pose one of the most serious hazards to space probes, satellites and astronauts. The most intense and largest solar energetic particle events are closely associated with fast coronal mass ejections able to drive interplanetary shock waves as they propagate through interplanetary space. The simulation of these particle events requires knowledge of how particles and shocks propagate through the interplanetary medium, and how shocks accelerate and inject particles into interplanetary space. Several models have appeared in the literature that attempt to model these energetic particle events. Each model presents its own simplifying assumptions in order to tackle the series of complex phenomena occurring during the development of such events. The accuracy of these models depends upon the approximations used to describe the physical processes involved in the events. We review the current models used to describe gradual solar energetic particle events, their advances and shortcomings, and their possible applications to space weather forecasting.  相似文献   

12.
During the past two years (2016-2018), great achievements have been made in the Chinese research of interplanetary physics, with nearly 100 papers published in the academic journals. The achievements are including but not limited to the following topics:solar corona; solar wind and turbulence; filament/prominence and jets; solar flare; radio bursts; particle acceleration at coronal shocks; magnetic flux ropes; instability; instrument; Coronal Mass Ejections (CMEs) and their interplanetary counterparts; Magnetohydrodynamic (MHD) numerical modeling; solar energetic particles and cosmic rays. The progress further improves our understanding of the eruptions of solar activities, their evolutions and propagations in the heliosphere, and final geoeffects on our Earth. These results were achieved by the Chinese solar and space scientists independently or via international collaborations. This paper will give a brief review of these achievements.   相似文献   

13.
从属函数在地磁扰动预报研究中的初步应用   总被引:6,自引:2,他引:4  
根据1966-1982年期间有关太阳耀斑、行星际激波和地磁扰动的观测资料而建立的从属函数,对1984-1985年间的行星际闪烁观测中能证认出的耀斑-激波所引起的地磁扰动作了预报试验。结果表明:(1)磁扰开始时间预报的相对误差,δT/T≤10%的事件数为20个,占总事件数的50%,δT/T≤20%的事件占总事件数的70%以上;(2)磁扰幅度(ΣKp)大小的预报,其相对误差δΣKp/ΣKp≤30%的事件数为32个,占总事件数的80%,而δΣKp/ΣKp≥60%仅占15%.本文方法显示了一定潜力,有待从聚类分析方面进一步深入。   相似文献   

14.
背景太阳风研究是根据行星际扰动传播情况预测空间天气状况的基础,磁流体(MHD)模拟是背景太阳风研究的重要手段.采用一种新的数值计算方式,利用Ideal GLM-MHD将计算过程中产生的磁场散度以ch的速度向计算区域外传播,从而消去磁场散度;重构部分使用受约束的最小二乘法,将磁场散度作为约束条件添加到重构中,进一步对重构后的磁场梯度进行修正;通量计算采用满足热力学第二定律的熵守恒格式,该格式能够确保在计算过程中熵不增,保证数值稳定.研究结果表明,该方法应用于太阳风数值模拟的求解得到了更加稳定的结果.   相似文献   

15.
Solar flares are explosive events in the solar corona, representing fast conversion of magnetic energy into thermal and kinetic energy, and hence radiation, due to magnetic reconnection. Modelling is essential for understanding and predicting these events. However, self-consistent modelling is extremely difficult due to the vast spatial and temporal scale separation between processes involving thermal plasma (normally considered using magnetohydrodynamic (MHD) approach) and non-thermal plasma (requiring a kinetic approach). In this mini-review we consider different approaches aimed at bridging the gap between fluid and kinetic modelling of solar flares. Two types of approaches are discussed: combined MHD/test-particle (MHDTP) models, which can be used for modelling the flaring corona with relatively small numbers of energetic particles, and hybrid fluid-kinetic methods, which can be used for modelling stronger events with higher numbers of energetic particles. Two specific examples are discussed in more detail: MHDTP models of magnetic reconnection and particle acceleration in kink-unstable twisted coronal loops, and a novel reduced-kinetic model of particle transport in converging magnetic fields.  相似文献   

16.
The problem of modeling solar energetic particle (SEP) events is important to both space weather research and forecasting, and yet it has seen relatively little progress. Most important SEP events are associated with coronal mass ejections (CMEs) that drive coronal and interplanetary shocks. These shocks can continuously produce accelerated particles from the ambient medium to well beyond 1 AU. This paper describes an effort to model real SEP events using a Center for Integrated Space weather Modeling (CISM) MHD solar wind simulation including a cone model of CMEs to initiate the related shocks. In addition to providing observation-inspired shock geometry and characteristics, this MHD simulation describes the time-dependent observer field line connections to the shock source. As a first approximation, we assume a shock jump-parameterized source strength and spectrum, and that scatter-free transport occurs outside of the shock source, thus emphasizing the role the shock evolution plays in determining the modeled SEP event profile. Three halo CME events on May 12, 1997, November 4, 1997 and December 13, 2006 are used to test the modeling approach. While challenges arise in the identification and characterization of the shocks in the MHD model results, this approach illustrates the importance to SEP event modeling of globally simulating the underlying heliospheric event. The results also suggest the potential utility of such a model for forcasting and for interpretation of separated multipoint measurements such as those expected from the STEREO mission.  相似文献   

17.
Ten years after the first observation of large-scale wave-like coronal disturbances with the EIT instrument aboard SOHO, the most crucial questions concerning these “EIT waves” are still being debated controversially – what is their actual physical nature, and how are they launched? Possible explanations include MHD waves or shocks, launched by flares or driven by coronal mass ejections (CMEs), as well as models where coronal waves are not actually waves at all, but generated by successive “activation” of magnetic fieldlines in the framework of a CME. Here, we discuss recent observations that might help to discriminate between the different models. We focus on strong coronal wave events that do show chromospheric Moreton wave signatures. It is stressed that multiwavelength observations with high time cadence are particularly important, ideally when limb events with CME observations in the low corona are available. Such observations allow for a detailed comparison of the kinematics of the wave, the CME and the associated type II radio burst. For Moreton-associated coronal waves, we find strong evidence for the wave/shock scenario. Furthermore, we argue that EIT waves are actually generated by more than one physical process, which might explain some of the issues which have made the interpretation of these phenomena so controversial.  相似文献   

18.
The solar wind wave heating models require substantial amount of wave power in order to efficiently heat and accelerate solar wind. The level of fluctuations is however limited by energetic particle observations. The simplest cyclotron sweep models result in convection-dominated transport, contradicting observations. However, models incorporating wave-wave -interactions, which cause wave energy to cascade in wavenumber, allow more reasonable energetic particle transport in the interplanetary space. The mean free path of the energetic particles remains still relatively short in the corona, providing favorable conditions for coronal mass ejection (CME) related shock acceleration. We study the consequences of this scenario on the energetic particle production related to CMEs. The role of self-generated waves is also discussed.  相似文献   

19.
We have studied a number of interplanetary space mission scenarios for space weather research and operational forecasting experiments and concluded that a spacecraft should be deployed at the L5 point of the Sun–Earth system to enable remote sensing of the Sun and interplanetary space and in situ measurements of solar wind plasma and high energy solar particle events. The L5 point is an appropriate position for making side-view observations of geo-effective coronal mass ejections and interplanetary plasma clouds.Here, we describe briefly the mission plan and the ongoing BBM development of important subsystems such as the wide field coronal imager (WCI) and the mission processor. The WCI will have a large CCD array with 16-bit sampling, to achieve a dynamic range of several thousand in order to detect very small deviations due to plasma clouds under zodiacal light contaminations a hundred times brighter than the clouds. The L5 mission we propose will surely contribute to the construction of an international space weather observation network.  相似文献   

20.
以1997年1月空气天气事件期间的观测为依据,在构造了比较接近真实的背景太阳风基础上,进一步利用三维时变的MHD模式,模拟了CME(日冕物质抛射)激发的扰动在行星际空间的传播过程,对地球空间环境的影响及行星际磁场南向分量Bz在1AU的时间经历。模拟结果与WIND卫星的测量进行了比较。结果表明,模拟与观测得到的扰动得到地球的时间、地球空间环境各量的变化及Bz的时间经历基本一致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号