首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
航空   5篇
航天技术   12篇
  2014年   1篇
  2013年   3篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2007年   1篇
  2005年   2篇
  2003年   4篇
  1985年   1篇
  1984年   1篇
排序方式: 共有17条查询结果,搜索用时 62 毫秒
1.
In this work we have tracked coronal mass ejections observed with the ground based Mirror Coronagraph for Argentina (MICA) and the Large Angle and Spectroscopic Coronagraph (LASCO) C2 and C3 on board of the Solar and Heliospheric Observatory (SOHO). The MICA telescope is located at El Leoncito (31.8 S, 69.3 W), San Juan (Argentina), since 1997 as part of a bilateral scientific project between Germany and Argentina. SOHO is a project of international cooperation between ESA and NASA. Together these instruments are able to observe the solar corona ranging from 1.05 to 32 solar radii. MICA images the Fe XIV emission line corona and LASCO coronagraphs observe the Thomson scattered white light corona. We have selected events for which there are observations from the three coronagraphs. Using the composite data we were able to obtain height-time diagrams for the corresponding dynamical coronal features traveling outwards in order to determine some of their kinematical properties, i.e., plane of sky velocity and acceleration.  相似文献   
2.
In this work a study is performed on the correlation between fast forward interplanetary shock parameters at 1 Astronomical Unit and sudden impulse (SI) amplitudes in the H-component of the geomagnetic field, for periods of solar activity maximum (year 2000) and minimum (year 1995–1996). Solar wind temperature, density and speed, and total magnetic field, were taken to calculate the static pressures (thermal and magnetic) both in the upstream and downstream sides of the shocks. The variations of the solar wind parameters and pressures were then correlated with SI amplitudes. The solar wind speed variations presented good correlations with sudden impulses, with correlation coefficients larger than 0.70 both in solar maximum and solar minimum, whereas the solar wind density presented very low correlation. The parameter better correlated with SI was the square root dynamic pressure variation, showing a larger correlation during solar maximum (r = 0.82) than during solar minimum (r = 0.77). The correlations of SI with square root thermal and magnetic pressure were smaller than with the dynamic pressure, but they also present a good correlation, with r > 0.70 during both solar maximum and minimum. Multiple linear correlation analysis of SI in terms of the three pressure terms have shown that 78% and 85% of the variance in SI during solar maximum and minimum, respectively, are explained by the three pressure variations. Average sudden impulse amplitude was 25 nT during solar maximum and 21 nT during solar minimum, while average square root dynamic pressure variation is 1.20 and 0.86 nPa1/2 during solar maximum and minimum, respectively. Thus on average, fast forward interplanetary shocks are 33% stronger during solar maximum than during solar minimum, and the magnetospheric SI response has amplitude 20% higher during solar maximum than during solar minimum. A comparison with theoretical predictions (Tsyganenko’s model corrected by Earth’s induced currents) of the coefficient of sudden impulse change with solar wind dynamic pressure variation showed excellent agreement, with values around 17 nT/nPa1/2.  相似文献   
3.
The white light coronagraphs onboard SOHO (LASCO-C2 and -C3) and most recently STEREO (SECCHI -COR1 and -COR2) have detected a myriad of coronal mass ejections (CME). They are a key component of space weather and under certain conditions they can become geo-effective, hence the importance of their kinematic characterization to help predict their effects. However, there is still a lot of debate on how to define the event boundaries for space weather purposes, which in turn makes it difficult to agree on their kinematic properties. That lack of agreement is reflected in both the manual and automated CME catalogs in existence. To contribute to a more objective definition and characterization of white-light coronagraph events, Goussies et al. (2010) introduced recently the concept of “texture of the event”. Based on that property, they developed a supervised segmentation algorithm to allow the automatic tracking of dynamic events observed in the coronagraphs field of view, which is called CORonal SEgmentation Technique (CORSET). In this work, we have enhanced the capabilities of the algorithm by adding several new functionalities, namely the automatic computation of different morphological and kinematic parameters. We tested its performance on 57 well-studied limb CME events observed with the LASCO coronagraphs between 1997 and 2001, and compared the parameters obtained with those from three existent CME lists: two of them obtained from an observer-based detection and tracking method (i.e., two manual catalogs), and the other one based on the automated detection and characterization of the CME events (i.e., a fully automated catalog). We found that 51 events could be tracked and quantified in agreement with the CME definition. In general terms, the position angle, and the radial and expansion speeds are in agreement with the manual catalogs used for comparison. On the other hand, some discrepancies between CORSET and the automated catalog were found, which can be explained by the different delimitation of the CME angular extent.  相似文献   
4.
In this study we perform a continuous Morlet wavelet transform method in time series of secondary cosmic rays and 1 AU interplanetary medium parameters for the interval from October 2001 to October 2002. The near 13.5-day periodicity was obtained during late 2001, and it was remarkable for muon data. Even though some works have pointed out that the main activations of the 13.5 day recurrence in near-Earth solar wind are related, e.g., with the heliosheet crossings or to the occurrence at 1 AU of two high speed streams approximately 180° apart in solar longitude per solar rotation, we aim to show that the period of about half the solar rotation during the end months of 2001 present in muon time series was apparently due to the occurrence of non-recurrent interplanetary disturbances. The interconnections among successive Forbush decreases, recovery phases and gradual muon depressions (associated with corotating interaction regions) seem to play an important role in such 13.5-day periodicity.  相似文献   
5.
Turbulence is ubiquitous in astrophysics. It radically changes many astrophysical phenomena, in particular, the propagation and acceleration of cosmic rays. We present the modern understanding of compressible magnetohydrodynamic (MHD) turbulence, in particular its decomposition into Alfvén, slow and fast modes, discuss the density structure of turbulent subsonic and supersonic media, as well as other relevant regimes of astrophysical turbulence. All this information is essential for understanding the energetic particle acceleration that we discuss further in the review. For instance, we show how fast and slow modes accelerate energetic particles through the second order Fermi acceleration, while density fluctuations generate magnetic fields in pre-shock regions enabling the first order Fermi acceleration of high energy cosmic rays. Very importantly, however, the first order Fermi cosmic ray acceleration is also possible in sites of magnetic reconnection. In the presence of turbulence this reconnection gets fast and we present numerical evidence supporting the predictions of the Lazarian and Vishniac (Astrophys. J. 517:700–718, 1999) model of fast reconnection. The efficiency of this process suggests that magnetic reconnection can release substantial amounts of energy in short periods of time. As the particle tracing numerical simulations show that the particles can be efficiently accelerated during the reconnection, we argue that the process of magnetic reconnection may be much more important for particle acceleration than it is currently accepted. In particular, we discuss the acceleration arising from reconnection as a possible origin of the anomalous cosmic rays measured by Voyagers as well as the origin cosmic ray excess in the direction of Heliotail.  相似文献   
6.
We here explore the effects of the SN explosions into the halo of star-forming galaxies like the Milky Way. Successive randomly distributed and clustered SNe explosions cause the formation of hot superbubbles that drive either fountains or galactic winds above the galactic disk, depending on the amount and concentration of energy that is injected by the SNe. In a galactic fountain, the ejected gas is re-captured by the gravitational potential and falls back onto the disk. From 3D non-equilibrium radiative cooling hydrodynamical simulations of these fountains, we find that they may reach altitudes up to about 5 kpc in the halo and thus allow for the formation of the so called intermediate-velocity-clouds (IVCs) which are often observed in the halos of disk galaxies. The high-velocity-clouds that are also observed but at higher altitudes (of up to 12 kpc) require another mechanism to explain their production. We argue that they could be formed either by the capture of gas from the intergalactic medium and/or by the action of magnetic fields that are carried to the halo with the gas in the fountains. Due to angular momentum losses to the halo, we find that the fountain material falls back to smaller radii and is not largely spread over the galactic disk. Instead, the SNe ejecta fall nearby the region where the fountain was produced, a result which is consistent with recent chemical models of the galaxy. The fall back material leads to the formation of new generations of molecular clouds and to supersonic turbulence feedback in the disk.  相似文献   
7.
In this work we present height-time diagrams of 2 halo coronal mass ejections, observed on September 28th, 1997 and June 29th, 1999. The CMEs were observed by the Large Angle and Spectroscopic Coronagraph (LASCO), which observes the solar corona from 2 to 32 solar radii. To obtain these diagrams we divide the LASCO images of a given sequence in angular slices, transform them into rectangular slices (their width chosen proportional to the time distance to the next image) and place them side by side. Thus, the speed profile of any pattern moving in the particular latitudinal slice can be derived. With this method we were able to identify even minor speed changes in several angular positions for the chosen events. This technique is particularly appropriate to identify acceleration or deceleration of structures in halo CMEs.  相似文献   
8.
We present a review on the interplanetary causes of intense geomagnetic storms (Dst≤−100 nT), that occurred during solar cycle 23 (1997–2005). It was reported that the most common interplanetary structures leading to the development of intense storms were: magnetic clouds, sheath fields, sheath fields followed by a magnetic cloud and corotating interaction regions at the leading fronts of high speed streams. However, the relative importance of each of those driving structures has been shown to vary with the solar cycle phase. Superintense storms (Dst≤−250 nT) have been also studied in more detail for solar cycle 23, confirming initial studies done about their main interplanetary causes. The storms are associated with magnetic clouds and sheath fields following interplanetary shocks, although they frequently involve consecutive and complex ICME structures. Concerning extreme storms (Dst≤−400 nT), due to the poor statistics of their occurrence during the space era, only some indications about their main interplanetary causes are known. For the most extreme events, we review the Carrington event and also discuss the distribution of historical and space era extreme events in the context of the sunspot and Gleissberg solar activity cycles, highlighting a discussion about the eventual occurrence of more Carrington-type storms.  相似文献   
9.
We have selected 57 limb coronal mass ejections observed by LASCO during the period of January1997 to April 2001. We used the related EIT activity close to the limb to define these CMEs as “limbs”. We measured the radial speed of the leading edge close to the center of these CMEs and the lateral expansion speed of the structures. Comparison of both speeds revealed a high correlation between them, the radial speed being around 88% of the expansion speed of the CME. The expansion speed can also be measured for halo CMEs so that it can be used to infer their radial speed toward earth, which is otherwise inaccessible.  相似文献   
10.
The transient X-ray pulsar A0535+26 was observed on October 4, 1980 during a high level intensity outburst with a balloon borne hard X-ray detector. High statistical quality source spectra were determined up to 100 keV. Both blackbody and Wien laws fit well the data. Pulse phase spectroscopy shows variation of temperature index between 7.5 and 8.5 keV in the off source spectra and between 7.4 and 10.5 keV in the off pulse spectra. The time averaged luminosity above 30 keV is 8×1036 erg/s.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号