首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
选择合适的支撑型式并扣除干扰是大飞机试验技术的关键问题。本文从理论与试验两方面分析翼型叶片腹支、尾支撑的干扰特性以及它们组合后产生的二次干扰问题。全面分析了支撑几何参数、纵向位置对干扰的影响,提供了工程实用支撑系统总体方案。  相似文献   

2.
运输机模型高速风洞试验支撑形式及支撑干扰研究   总被引:1,自引:0,他引:1  
选择合适的支撑形式并扣除支撑干扰是运输机模型高速风洞试验技术的关键问题。采用理论计算、测力和测压试验等手段研究了不同偏度尾支撑、叶片腹支撑对运输类飞机气动特性的支撑干扰。采用叶片腹支撑分别与0°、5°、15°、30°假尾支撑组合试验及垂尾支撑分别与0°、5°、15°、30°假尾支撑组合试验获得相应尾支撑的干扰特性,采用0°尾支撑与假叶片腹支撑组合试验获得叶片腹支撑的干扰特性。研究表明:0°/5°尾支撑修正支撑干扰后的试验结果与前位叶片腹支撑修正支撑干扰后的试验结果一致性较好,0°/5°尾支撑作为主支撑、前位叶片腹支撑作为辅助支撑是运输类飞机高速风洞试验较好的一种支撑系统,采用该支撑获得的试验结果是可信的;由于很难准确获得大偏度尾支撑的支撑干扰,大偏度(例如30°)尾支撑修正支撑干扰后的试验结果误差较大,选择大偏度尾支撑作为主支撑进行运输类飞机高速风洞试验是不合适的。  相似文献   

3.
对某大飞机布局风洞实验尾支撑干扰开展了数值模拟和实验研究,发展的数值方法计算结果与风洞实验结果有很好的一致性。对于类似构型的飞机,在迎角-2°~6°范围,可认为尾支撑干扰量随迎角呈线性变化,采用前位叶片支撑作为辅助支撑带来的二次干扰量可以忽略,新型双天平辅助支撑系统试验进一步验证了这一结果;尾支撑对机身、尾翼、机翼等部件的绕流都有影响,干扰量随构型而变,对阻力、力矩影响较大,且随Ma数变化,因此不同构型实验数据需要单独修正。所发展的带风洞支撑系统的数值模拟软件能够满足工程应用要求,可用于支撑干扰修正研究以及风洞实验支撑系统优化设计。  相似文献   

4.
在研究了翼型叶片腹支(前、后位)/尾支对大展弦比飞机全机及部件的纵向干扰特性,尾支对全机横向干扰特性,并分析了各种支撑对飞机各部件干扰的影响之后表明:对于不同平尾位置的大飞机,前位叶片腹支是三种支撑中干扰最小的,其纵向干扰量均小于风洞试验最大误差。利用前位腹支-尾支组合进行大飞机纵、横向试验具有明显的优越性。  相似文献   

5.
分析了大型飞机在高速风洞中常用的支撑形式(尾支撑、腹支撑和条带支撑)的干扰特性,比较了尾支撑干扰试验中辅助支撑装置的二次干扰量,为大型飞机高速风洞试验的支撑选择提供了参考依据。以Ty-154标模为研究对象,基于结构嵌套网格,通过数值求解Ty-154标模有、无支撑的气动特性获取了相应的支撑干扰量,分析了支撑干扰产生的机理。通过数值模拟尾支撑、腹支撑和条带支撑的组合状态,探索了辅助支撑装置的二次干扰影响。结果表明:数值模拟与试验结果吻合较好,研究结果可靠性高;尾支撑对试验模型的阻力和俯仰力矩系数干扰较大,条带支撑对试验模型的升阻特性干扰较小,腹支撑对试验模型的阻力系数干扰较大,对俯仰力矩系数干扰较小;Ma0.9时三种支撑形式的干扰量均迅速增加,腹支撑形式的干扰量增加最为剧烈;在尾支撑干扰修正试验中,腹支撑与条带支撑引起的二次干扰量均很小,工程应用可忽略。  相似文献   

6.
低速风洞大攻角张线式支撑系统   总被引:6,自引:0,他引:6  
介绍了用于CARDC-Φ3.2m亚声速风洞的大攻角张线式支撑系统的组成,试验装置的结构及其特点,给出了模型考核试验和支架干扰试验的主要结果,并进行了简要的讨论,试验表明,本支撑系统具有可试验的攻角和侧滑角范围大,支撑干扰小,控制和测量精度高,支撑刚度好等特点。  相似文献   

7.
本文介绍于CARDC-Φ3.2m亚声速风洞的大攻角张线式支撑系统的组成。试验装置的结构及其特点,给出了模型考核试验和支架干扰试验的主要结果,并进行了简要的讨论。试验表明:本支撑系统具有可试验的攻角和测滑角范围大,支撑干扰小,控制和测量精度高,支撑刚度好等特点。  相似文献   

8.
本文探讨柔性支撑定位装置在飞机大部件对接领域的应用,讨论了先进数字柔性定位工装发展的前景及现状,重点介绍了新技术应用于传统工装结构中发展起来的柔性支撑定位装置的设计技术、结构形式和应用方法。  相似文献   

9.
我院在“十五”期间研制了一套新的高速民机张线支撑系统。本文介绍了新张线支撑系统的结构设计、控制系统设计、张线天平设计方法和校准,以及整套系统地面调试结果。本套张线支撑系统可以应用于FL-2风洞的民机及大型运输机等具有大船尾角后体飞机的全机选型测力风洞试验,也可以应用于与尾撑、腹撑等主辅支撑形式进行支撑干扰修正。  相似文献   

10.
一种适用于具有大展弦比机翼和船尾形机身的飞机模型的腹部支撑方式、腹支装置的设计要求和试验方法、以及腹支撑干扰机理在此作了介绍,并给出了一些实验结果和对实验数据的修正方法。  相似文献   

11.
焊接技术在大飞机机体研制中的应用及展望   总被引:1,自引:0,他引:1  
大飞机通常具有机体尺寸大、可靠性较高、使用寿命长(飞行时间超过90万h)等特点。为满足其飞行性能要求,越来越多的轻质高强材料被大量用于大飞机的生产研制。本文分别介绍了大飞机装配过程中的几种先进的连接技术,并阐述未来可能应用于大飞机研制的焊接技术。  相似文献   

12.
本文描述了单座和双座AM-X飞机大迎角试验计划,作了完成试验工作的技术综述,描述了试验用的改进飞机,采用的特殊方法,用于包线扩展的递增方法及其结果,对有关工作的技术,后勤,组织,计划原则和使用的技术等也提供了重要的评价。  相似文献   

13.
合理选择模型的支撑形式和解决支架干扰问题是准确获取气动力数据的关键因素。为了寻找一种合适的运输类飞机在高速风洞试验中的支撑形式,首先通过计算分析和试验验证,给出了运输类飞机高速风洞试验中30°尾支撑支架干扰问题存在的原因,然后根据0°、5°、15°以及30°不同尾支撑形式的计算分析和专项试验论证结果,提出并验证了小角度尾支撑是现阶段运输类飞机高速风洞试验中最合理、最有效的支撑形式。  相似文献   

14.
为提高大型飞机风洞试验时的支撑系统刚度、降低支撑气动干扰以及实现真实船尾后体流动的模拟,在2.4米跨声速风洞中建立了条带悬挂支撑试验系统.主要包括专用试验段、条带支撑机构、控制系统、天平设备、标模及半弯刀尾支撑机构研制等六部分.系统研制成功后,在2.4米跨声速风洞中开展了流场调试及标模试验,分别采用风洞试验和数值模拟方法获取了条带悬支撑的干扰量.在某飞机高速风洞试验中,采用条带支撑系统,获得了飞机模型的气动特性,并与尾撑试验结果进行了对比.以条带支撑为辅助支撑,得到了尾支撑干扰量,与腹撑试验结果进行了对比.研究结果表明,条带悬挂支撑系统具备型号应用条件,同期重复性精度高,在-2°≤α≤2°范围内,重复性精度满足σCL≤0.0012,σCD≤0.00013,σCm≤0.0005,标模试验结果与国外风洞试验相关性较好;条带支撑干扰试验结果与数值模拟吻合较好,低亚声速时支撑干扰量较小,在-4°≤α≤10°范围内,M=0.6时的支撑干扰量ΔCL≤0.005,ΔCD≤0.0008,ΔCm≤0.005.  相似文献   

15.
近50多年来,数控技术的发展和应用水平发生了日新月异的变化。在各界关注中国"大飞机"项目启动之际,为了进一步了解大飞机数控加工技术的发展现状及趋势,本期论坛汇集行业专家、供应商、航空用户的各方观点,对大飞机数控加工技术进行了多角度分析。  相似文献   

16.
数字化设计技术是大飞机研制的关键技术之一,它集成了多项先进技术,能有效地缩短飞机的研制周期,提高研制质量和设计效率。本期论坛将从多个层面解析大飞机数字化设计技术现状及未来发展趋势。  相似文献   

17.
<正>国外大型民机及军机大量采用数字化装配技术,大幅提高了装配质量,缩短了装配周期,已全面进入飞机装配数字化时代。大型飞机装配具有高复杂性和高精度特点,加大对大飞机数字化装配技术的研究将对我国大飞机装配水平的提高起到巨大的推动作用。  相似文献   

18.
2.4米跨声速风洞大展弦比飞机测力试验技术研究   总被引:2,自引:0,他引:2  
针对大展弦比飞机的气动布局特点,在2.4米跨声速风洞中开展了大展弦比飞机测力试验技术研究。该项研究建立了大升阻比高精度天平设计技术和模型支撑系统设计平台,研制了专用大升阻比高精度测力天平和模型支撑系统。在国内高速风洞中建立了大型跨声速风洞模型设计新准则。研究结果表明:所提出和制定的方案是科学合理的,为我国大飞机研制提供了可靠的技术支撑。  相似文献   

19.
针对飞机装配对大尺寸、高精度、兼容性强、扩展性好、快速组网的测量技术需求,开展面向飞机装配的大尺寸多系统测量基准场构建技术研究,提出基准点优化设计原则,采用基于激光跟踪仪的多站位冗余测量长度约束算法,构建兼容飞机装配现场设备的三维精密测量基准场,并通过试验对比验证了测量基准场的标定精度.最后通过典型应用案例阐述了在飞机...  相似文献   

20.
基于用局部线化代替非线性概念.探索了利用大迎角飞行试验数据辨识飞机空气动力参数问题。在准定常假设条件下,提出了迎角分割算法和时间分割算法,针对歼教七飞机的失速飞行试验数据,用最小二乘回归方法和最大似然法验证了上述大迎角参数辨识的思想,取得了较好的结果,为进一步开展大迎角参数辨识技术的工程应用奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号