首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
喷射液束电解-激光复合加工工艺试验研究   总被引:5,自引:1,他引:4  
张华  徐家文  王吉明  袁立新 《航空学报》2009,30(6):1138-1143
喷射液束电解 激光复合加工是一项新探索的加工技术,其特点是既发挥激光加工的高效率,又借助喷射电液束的冷却、冲刷、电解作用而实现在线去除再铸层。基于该加工原理的分析,在对激光电解液中衰减特性研究的基础上,研制了试验系统并对不锈钢片进行了打孔工艺试验。试验结果表明,应用液压1.5 MPa、浓度18%的NaNO3电解液的喷射液束电解-激光复合加工可实现再铸层减少90%以上。通过对打孔形貌的对比以及加工工艺规律的初步分析,揭示了喷射液束电解-激光复合加工以激光加工为主,电解加工辅助去除再铸层的加工原理,证实了该复合加工工艺的可行性,可望在航空航天领域得到广泛工程应用。  相似文献   

2.
一种提高表面完整性的气膜孔成形方法   总被引:1,自引:0,他引:1  
为了解决目前航空发动机涡轮叶片气膜孔成形工艺存在热影响严重等问题,提出了采用超快激光环切与螺旋扫描的加工方法,设计了一种可实现高效、无热效应气膜孔加工的双激光光源微加工系统,并从作用机理和实际加工过程两方面分析了热效应的产生原因,指出了其中的主要影响因素,然后针对这些因素选用DD6材料进行了工艺参数优化和实验验证.实验结果表明:采用500fs激光与微秒长脉冲激光复合加工的方式可以使精细钻孔的效率提升约10倍,并得到基本无重铸层和微裂纹的涡轮叶片气膜孔;其工艺参数包括扫描速度为2400r/min,重叠率为12%,进给量为5μm,重复频率为20kHz以及0.6Pa同轴吹气.表明超快激光配合合理的工艺参数和加工方式可以实现无热效应气膜孔加工,是一种有效提高气膜孔成形表面完整性的工艺方法.   相似文献   

3.
电火花-电解复合穿孔(ECDD)加工方法有望实现难加工材料涡轮叶片气膜冷却孔无重铸层高效加工,为了进一步提升小孔孔壁的加工质量,提出了在工件底部填充冰层的电火花-电解复合穿孔加工新方法。分析了冰层辅助对复合加工过程中两极之间电流电压的波形、复合穿孔的加工效率、小孔的出入口孔径、孔壁重铸层去除等的影响,进行了冰层辅助与无冰层辅助电火花-电解复合穿孔对比试验。试验表明:冰层辅助加工可以在小孔穿透之后形成充分的反向冲液,有效地解决小孔穿透之后的漏液问题。在增加底部停顿时间的基础上,即小孔穿透后管电极到达预设深度继续停留一段时间,延长管电极对孔壁的电解作用时间,可以显著提高重铸层的去除效果,有望实现小孔整个孔壁重铸层的完全去除。  相似文献   

4.
Nickel-based superalloys are widely employed in modern aircraft engines because of their excellent material characteristics, particularly in the fabrication of film cooling holes. How-ever, the high machining requirement of a large number of film cooling holes can be extremely chal-lenging. The hybrid machining technique of tube electrode high-speed electrochemical discharge drilling (TEHECDD) has been considered as a promising method for the production of film cooling holes. Compared with any single machining process, this hybrid technique requires the removal of more complex machining by-products, including debris produced in the electrical discharge machin-ing process and hydroxide and bubbles generated in the electrochemical machining process. These by-products significantly affect the machining efficiency and surface quality of the machined prod-ucts. In this study, tube electrodes in different inner diameters are designed and fabricated, and the effects of inner diameter on the machining efficiency and surface quality of TEHECDD are inves-tigated. The results show that larger inner diameters could effectively improve the flushing condi-tion and facilitate the removal of machining by-products. Therefore, higher material removal efficiency, surface quality, and electrode wear rate could be achieved by increasing the inner diam-eter of the tube electrode.  相似文献   

5.
《中国航空学报》2016,(2):560-570
Single-crystal superalloys are typical advanced materials used for manufacturing aeroengine turbine blades. Their unique characteristics of high hardness and strength make them exceedingly difficult to machine. However, a key structure of a turbine blade, the film-cooling hole,needs to be machined in a single-crystal superalloy; such machining is challenging, especially considering the increasing levels of machining efficiency and quality demanded by the aeroengine industry. Tube electrode high-speed electrochemical discharge drilling(TSECDD), a hybrid technique of high-speed electrical discharge drilling and electrochemical machining, provides high machining efficiency and accuracy, as well as eliminating the recast layer. In this study, TSECDD is used to machine a film-cooling hole in a nickel-based single-crystal superalloy(DD6). The Taguchi methods of experiment are used to optimise the machining parameters. Experimental results show that TSECDD can effectively drill the film-cooling hole; the optimum parameters that give the best performance are as follows: pulse duration: 12 ls, pulse interval: 30 ls, peak current:6 A, and salt solution conductivity: 3 m S/cm. Finally, a hole is machined by TSECDD, and the results are compared with those obtained by electrical discharge machining. TSECDD is found to be promising for improving the surface quality and eliminating the recast layer.  相似文献   

6.
王维  朱荻  曲宁松  黄绍服  房晓龙 《航空学报》2010,31(8):1667-1673
 为提高群孔电解加工的稳定性和成形精度,对群孔管电极电解加工(ECD)的分流腔流场进行了建模分析。通过对分流腔进行数值求解,研究了分流腔电解液的分布规律,并分析得到了影响电解液分流均匀度的主?问?分流腔直径),进而对其进行了优化设计。基于该优化设计并结合试验得到了适合正流群孔电解加工的分流均匀度系数和相应的尺寸系数。采用优化的分流腔参数和加工参数进行试验,得到了尺寸精度较好的长排孔结构,孔间距5 mm,孔径为(1.03±0.03)mm,其加工过程稳定,无短路现象。通过优化分流腔结构可以提高其分流均匀度,从而使电解孔加工的稳定性显著增加,加工精度提高。  相似文献   

7.
阐述了激光陀螺光学加工的特点。指出激光陀螺的光学加工是本着构成满足特定要求的激光谐振腔的目的,以谐振腔工作时的性能要求为依据,采用其自身特有的打孔和抛光工艺,来严格保证孔的直线度、孔与孔、孔与面之间位置度公差要求。其中涉及的大深径比细长孔加工、不规则内孔抛光、超光滑表面加工及相对已成形孔有严格位置、角度精度要求的面形抛光更是突出了激光陀螺光学加工的特色。  相似文献   

8.
张晓兵  孙瑞峰 《航空学报》2014,35(3):894-901
为了提高激光加工航空发动机气膜冷却孔质量,介绍了一种采用焦耳级脉冲能量毫秒激光在镍基高温合金上快速加工初始通孔,再采用毫焦耳级脉冲能量纳秒激光扩孔的二次加工小孔方法。通过该方法试图消除毫秒激光加工小孔产生的再铸层以及解决纳秒激光直接加工几乎无再铸层小孔效率低、深度有限的问题,从而实现更高效率加工高质量气膜冷却孔。试验研究结果表明,该方法可以有效去除毫秒激光加工小孔孔壁的再铸层,改善孔壁表面质量,与纳秒激光直接加工小孔比较,在加工1 mm左右深的小孔时可以提高加工效率,但加工2 mm以上深度的小孔时,对提高加工效率的作用不明显。基于试验结果及分析,对二次法加工小孔提出了改进措施。  相似文献   

9.
《中国航空学报》2016,(6):1830-1839
The metal grille, commonly composed of an amount of diamond holes, has been grow-ingly used as a key structure on stealth aircraft. Electrochemical machining (ECM) promises to be increasingly applied in aircraft manufacturing on the condition that process stability is guaranteed. In this work, a flow field model was designed to improve the process stability. This model is endowed with a variety of flow channel features, together with vibrating feeding modes. The flow field distribution on the bottom surface of the diamond hole was discussed and evaluated as well. The numerical results show that a short arc flow channel could significantly enhance the uniformity of electrolyte velocity distribution and a vibrating feeding of the cathode enables to reduce both fluctuations of the electrolyte velocity and pressure on the bottom surface of the diamond hole. Consequently, the flow field mutations were eliminated. It is verified from the experimental results that a short arc flow channel, when combined with vibrating feeding, is capable of improving machining localization and process stability markedly. What is more, the side gap on the bottom surface of the diamond hole could also be reduced by the abovementioned approach.  相似文献   

10.
Film cooling holes are widely used in aero-engine turbine blades. These blades feature large numbers of holes with complex angles and require a high level of surface integrity. Electrochemical discharge drilling(ECDD) combines the high efficiency of electrical discharge drilling(EDD) with high quality of electrochemical drilling(ECD). However, due to the existence of a variety of energy for material removal, accurate and timely detection of breakthroughs is fraught with difficulties. An insuffic...  相似文献   

11.
分别采用机械钻削制孔与激光制孔两种工艺对SiC_f/SiC陶瓷基复合材料进行制孔,对其质量以及工艺特点进行评价分析。结果表明,机械钻削制孔孔径精度较好但存在刀具磨损严重、出现毛刺崩边现象等问题;激光制孔效率较高,但孔存在锥度且因热影响区的存在导致孔的内壁表面出现分层、裂纹等缺陷。  相似文献   

12.
An appropriate flow mode of electrolyte has a positive effect on process efficiency, surface roughness, and machining accuracy in the electrochemical machining(ECM) process. In this study, a new dynamic lateral flow mode, in which the electrolyte flows from the leading edge to the trailing edge, was proposed in trepanning ECM of a diffuser. Then a numerical model of the channel was set up and simulated by using computational fluid dynamics software. The result showed that the distribution of the flow field was comparatively uniform in the inter-electrode gap. Furthermore, a fixture was designed to realize this new flow mode and then corresponding experiments were carried out. The experimental results illustrated that the feeding rate of the cathode reached 2 mm/min, the best taper angle was about 0.4°, and the best surface roughness was up to Ra= 0.115 lm. It reflects that this flow mode is suitable and effective, and can also be applied to machining other complex structures in trepanning ECM.  相似文献   

13.
微小孔电化学去毛刺试验研究   总被引:1,自引:0,他引:1  
采用电化学方法对不锈钢管壁上钻削的微小孔与不锈钢管内壁相贯处难到达区域的毛刺进行去除。实验研究了加工时间、电解液成分与浓度、电解液流动方式对微小孔毛刺去除质量的影响以及相应条件下阴阳极极间电压的变化规律。研究结果表明:在优选的加工工艺参数条件下,可有效地去除微小孔毛刺。  相似文献   

14.
《中国航空学报》2020,33(10):2782-2793
Superalloys are commonly used in aircraft manufacturing; however, the requirements for high surface quality and machining accuracy make them difficult to machine. In this study, a hybrid electrochemical discharge process using variable-amplitude pulses is proposed to achieve this target. In this method, electrochemical machining (ECM) and electrical discharge machining (EDM) are unified into a single process using a sequence of variable-amplitude pulses such that the machining process realizes both good surface finish and high machining accuracy. Furthermore, the machining mechanism of the hybrid electrochemical discharge process using variable-amplitude pulses is studied. The mechanism is investigated by observations of machining waveforms and machined surface. It is found that, with a high-frequency transformation between high- and low-voltage waveforms within a voltage cycle, the machining mechanism is frequently transformed from EDM to pure ECM. The critical discharge voltage is 40 V. When pulse voltages greater than 40 V are applied, the machining accuracy is good; however, the surface has defects such as numerous discharge craters. High machining accuracy is maintained when high-voltage pulses are replaced by low-voltage pulses to enhance electrochemical dissolution. The results indicate that the proposed hybrid electrochemical discharge process using variable-amplitude pulses can yield high-quality surfaces with high machining accuracy.  相似文献   

15.
Electrochemical drilling(ECD) provides an alternative technique for drilling multiple small holes in difficult-to-machine materials in numerous industrial applications such as for aeroengines. The value and fluctuation of electrolyte flowrate can seriously affect the machining stability and hole quality in ECD. In particular, when drilling multiple holes, the distribution and fluctuations of the electrolyte flowrate in each channel could influence the uniformity of the electrolyte flowrate among...  相似文献   

16.
Titanium and its alloys have found very wide application in aerospace due to their excellent characteristics although their processing is still a challenge. Electrochemical machining is an important issue in the fabrication of titanium and titanium alloys. Wire electrochemical machining (WECM) is mainly used for workpiece cutting under the condition of different thickness plates. It has a great advantage over wire electro-discharge machining, which is the absence of heat-affected zone around the cutting area. Moreover, the wire electrode in WECM could be used repetitively because it is not worn out. Thus, much attention has been paid to WECM. The effective way of removing electrolysis products is of importance to WECM. In this paper, the axial electrolyte flushing is presented to WECM for removing electrolysis products and renewing electrolyte. The Taguchi experiment is conducted to optimize the machining parameters, such as wire feedrate, machining voltage, electrolyte concentration, etc. Experimental results show that WECM with axial electrolyte flushing is a promising issue in the fabrication of titanium alloy (TC1). The feasibility of multi-wire electrochemical machining is also demonstrated to improve the machining productivity of WECM.  相似文献   

17.
《中国航空学报》2021,34(2):28-53
Because of several advantages, such as no tool wear, independence on the mechanical properties of the material, and high machining efficiency, electrochemical machining (ECM) has become a viable method for machining components in numerous industrial applications, particularly in the manufacture of typical aero-engine components with complex structures fabricated from materials that are difficult to cut. This paper highlights the current developments, new trends, and technological advances of key factors of ECM, such as electrochemical dissolution characteristics of novel difficult to cut materials which are often used in aero-engine, numerical simulation of electrochemical process, design for the complex profile and structure of cathode tool, flow field simulation and design for uniform electrolyte flow, and innovation of electrochemical machining or hybrid methods which reflect the state of the art in academic and industrial research on electrochemical machining in aero-engine manufacturing.  相似文献   

18.
以航空发动机叶片制孔为导向,结合飞秒激光对单晶镍基高温合金材料的非热熔性损伤阈值(Φth1)和热熔性损伤阈值(Φth2)特征,研究了飞秒激光能量密度(0Φ44.2J/cm2)对制孔重铸层和加工效率的影响规律。研究结果表明:在Φth1ΦΦth2时,镍基合金经飞秒激光加工后加工侧壁没有出现明显的重铸物;在ΦΦth2时,加工侧壁开始出现重铸物,并随着能量密度的增加,重铸层厚度增大。在试验结果的基础上,建立了飞秒激光单脉冲加工深度与能量密度的定量关系。能量密度越高,飞秒激光单脉冲加工深度越大,加工效率越高。  相似文献   

19.
Working performances of the components made out of 49Fe-49Co-2V alloy are closely related to the surface integrity of the drilled holes, which are influenced remarkably by the cooling conditions. The present study focuses on the surface integrity differences between wet and dry drilled 49Fe-49Co-2V alloy holes. The drilled hole surface roughness and topographies, metallurgical and mechanical properties, and the exit characterizations were obtained using optical microscopy(OM), scanning electron ...  相似文献   

20.
钛基复合材料是一种典型的难加工材料,采用传统机械加工方法存在加工效率低和加工质量差等问题。利用电解加工技术,采用直径为10mm的管状阴极,对(TiB+TiC)/TC4复合材料进行电解钻孔加工试验研究。进行了(TiB+TiC)/TC4复合材料的电化学特性研究,测量了(TiB+TiC)/TC4复合材料在10%NaNO3溶液中的极化曲线和电流效率。探究了加工电压、电解液压力对加工精度的影响。结果表明,当加工电压为30V,电解液压力为0.6MPa时,电解钻孔可以在1mm/min的进给速度下稳定加工。当加工的盲孔深径比为3.06时,孔的圆度误差为41.1μm,锥度为0.4°,具有较高的加工精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号