首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The US RLV program aims to stimulate commercial development of a next-generation heavy-lift launcher and lower launch costs by one order of magnitude from the Space Shuttle. This paper discusses the incentives needed to encourage private investment — income tax relief, investment mitigation, financing assistance — in the venture and uses a specifically developed case study model to evaluate their effectiveness. It finds that an R&D tax credit would be the most practical incentive. Directions for future work are provided.  相似文献   

2.
The agreement by the USA and Cocom to allow the export of US-built satellites for launch on Chinese launchers raised the national subsidy issue. The international commercial launch market is multinational and highly competitive; launch suppliers have accused each other of being unfairly subsdized. Currently the US government is engaged in various negotiations to establish a ‘level playing field’. A clear study of the subsidy issue is essential. This article examines some of the charges and the current situation associated with each country and suggests a possible approach for the USA to remain competitive in the international commercial launch market.  相似文献   

3.
The technical development trend of future launch vehicle systems is towards fully reusable systems, in order to reduce space transportation cost. However, different types of launch vehicles are feasible, as there are
• —winged two-stage systems (WTS)
• —ballistic single-stage vehicles (BSS)
• —ballistic two-stage vehicles (BTS)
The performance of those systems is compared according to the present state of the art as well as the development cost, based on the “TRANSCOST-Model”. The development costs are shown versus launch mass (GLOW) and pay-load for the three types of reusable systems mentioned above.It is shown that performance optimization and cost minimization lead to different results. It is more economic to increase the vehicle size for achieving higher performance, instead of increasing technical complexity.Finally it is described that due to the essentially lower launch cost of reusable vehicles it will be feasible to recover the development cost by an amortization charge on the launch cost. This possibility, however, would allow commercial funding of future launch vehicle developments.  相似文献   

4.
The commercial launch industry is maturing into an international market that is highly price competitive. A common way to deal with the high cost of launch services is to use a single booster to place several payloads into orbit. This practice requires the launch provider to divide the cost of the shared mission between the customers. Unfortunately, the methods normally used to do this are inadequate. This paper addresses the question of how best to share launch costs. It examines the existing methods and introduces two alternative methods for this purpose. The new methods are demonstrated and shown to be superior.  相似文献   

5.
《Acta Astronautica》2008,62(11-12):1076-1084
Over the past fifteen years, major U.S. initiatives for the development of new launch vehicles have been remarkably unsuccessful. The list is long: NLI, SLI, and X-33, not to mention several cancelled programs aimed at high speed airplanes (NASP, HSCT) which would share some similar technological problems.The economic aspects of these programs are equally as important to their success as are the technical aspects. In fact, by largely ignoring economic realities in the decisions to undertake these programs and in subsequent management decisions, space agencies (and their commercial partners) have inadvertently contributed to the eventual demise of these efforts.The transportation revolution that was envisaged by the promises of these programs has never occurred. Access to space is still very expensive; reliability of launch vehicles has remained constant over the years; and market demand has been relatively low, volatile and slow to develop. The changing international context of the industry (launching overcapacity, etc.) has also worked against the investment in new vehicles in the U.S. Today, unless there are unforeseen technical breakthroughs, orbital space access is likely to continue as it has been with high costs and market stagnation.Space exploration will require significant launching capabilities. The details of the future needs are not yet well defined. But, the question of the launch costs, the overall demand for vehicles, and the size and type of role that NASA will play in the overall launch market is likely to influence the industry. This paper will emphasize the lessons learned from the economic and management perspective from past launch programs, analyze the issues behind the demand for launches, and project the challenges that NASA will face as only one new customer in a very complex market situation. It will be important for NASA to make launch vehicle decisions based as much on economic considerations as it does on solving new technical challenges.  相似文献   

6.
Over the past fifteen years, major U.S. initiatives for the development of new launch vehicles have been remarkably unsuccessful. The list is long: NLI, SLI, and X-33, not to mention several cancelled programs aimed at high speed airplanes (NASP, HSCT) which would share some similar technological problems.The economic aspects of these programs are equally as important to their success as are the technical aspects. In fact, by largely ignoring economic realities in the decisions to undertake these programs and in subsequent management decisions, space agencies (and their commercial partners) have inadvertently contributed to the eventual demise of these efforts.The transportation revolution that was envisaged by the promises of these programs has never occurred. Access to space is still very expensive; reliability of launch vehicles has remained constant over the years; and market demand has been relatively low, volatile and slow to develop. The changing international context of the industry (launching overcapacity, etc.) has also worked against the investment in new vehicles in the U.S. Today, unless there are unforeseen technical breakthroughs, orbital space access is likely to continue as it has been with high costs and market stagnation.Space exploration will require significant launching capabilities. The details of the future needs are not yet well defined. But, the question of the launch costs, the overall demand for vehicles, and the size and type of role that NASA will play in the overall launch market is likely to influence the industry. This paper will emphasize the lessons learned from the economic and management perspective from past launch programs, analyze the issues behind the demand for launches, and project the challenges that NASA will face as only one new customer in a very complex market situation. It will be important for NASA to make launch vehicle decisions based as much on economic considerations as it does on solving new technical challenges.  相似文献   

7.
Space is now a global business, yet the cost of getting to space is still high. Developing new launch vehicles that are cheaper, safer, and more reliable is the key to both rapid commercial growth and to more and better government uses of space. However, the R&D process leading to new launch vehicles is expensive and technically challenging; the past 50 years have seen many government development programs, but no major technological breakthroughs. Perhaps, it is therefore time to think about other ways of developing new launch vehicles. The best expertise in this field resides primarily with private companies and is spread across many actors and nations. A consortium led by space firms might be a better approach to opening up space in the 21st century. Governments will have to develop new policies treating space as though it were a commercial industry, in particular, relaxing export trade restrictions wherever possible. Issues of dual-use may be outweighed by the rapidly growing widespread availability of launch capabilities. Since new launch vehicles will require large up-front R&D expenditures, government support will continue to be needed to supplement private capital funds. Contributions to this effort should be international. However, difficult it might be in today's security conscious environment to reorient government policy, doing so may offer the most efficient and successful way to break the technological and economic barriers to more reliable access to space.  相似文献   

8.
Present operational space telecommunication systems are based on simultaneous availability of more than one satellite on orbit, mainly a spare satellite in addition to the operational one.Considering the costs associated to the delivery of extra flight models and to extra launchers, the question is asked whether it would not be advantageous to launch a very limited number of “overredundant” spacecraft instead of several standard satellites.The paper gives main conditions of reliability, size and redundancy concept under which an “overredundant” spacecraft could be a competitive approach to future operational systems.  相似文献   

9.
EUROCKOT Launch Services GmbH has been founded by Daimler-Benz Aerospace of Germany and Khrunichev State Research and Production Space Center of Russia to offer world-wide cost effective launch services on the Rockot launch system. The Rockot commercial program is described. Rockot can launch satellites weighing up to 1850 kg into polar and other low earth (LEO) orbits. The Rockot launch vehicle is based on the former Russian SS-19 strategic missile. The first and second stages are inherited from the SS-19, the third stage named Breeze is newly developed and has multiple ignition capability. The Rockot launch system is flight proven. In addition to the currently adapted Rockot launch site Plesetsk for high inclinations, EUROCKOT is in the process to also adapt the Baykonur cosmodrome as their complementary Rockot launch site for lower inclinations. The wide range of Rockot performance is provided. The first commercial launch is foreseen in the middle of 1999. The expected launch capacity for Plesetsk and Baykonur will exceed 10 launches per year. The complete Rockot system including performance is presented.  相似文献   

10.
As the human spaceflight industry grows the agencies charged with regulating that industry meet significant challenges. An improvement in launch success would improve the safety for the crew and passengers of a commercial human spaceflight. With respect to ELV launches, NASA's regulations over civil launches are mission success oriented while commercial launches regulated by the FAA-AST, the agency that will also be charged with human spaceflight, takes a more public safety oriented stance. A comparison of the launch success between civil and commercial launches is used to inform the decision on whether or not mission success would be an appropriate regulatory stance for the FAA-AST. The results show that there is no significant difference in launch success between civil and commercial ELV launches. Because of this and because the industry is wary of over regulation, there is indication that a mission success oriented stance might not be appropriate for regulating commercial human spaceflight.  相似文献   

11.
Since the early 1990s the USA has maintained export control sanctions against Chinese international commercial satellite launch services. In 1998 these sanctions were further strengthened, resulting in a de facto international embargo that is premised on ITAR export licenses. Since 1998 this de facto embargo has effectively prohibited China from launching Western commercial satellites of a sophisticated technological standard. Today, European commercial satellite manufacturers are positioned to fully benefit from ITAR-free technology investments, gaining access to Chinese launch services for the launch of commercial telecommunication satellites that are technologically comparable to US satellites. This article examines the policy implications for the USA in light of EU regulatory divergence and the impending return of China to the international commercial launch services market.  相似文献   

12.
In this Viewpoint — an edited version of a statement made to the US House Committee on Science's Subcommittee on Space and Aeronautics' hearing on ‘US launch strategy’ — the President of Arianespace, Inc analyses the overriding importance of US government policies and executive decisions on the shaping and behavior of the international market in commercial space launch services. Chief among these is the overruling of commercial imperatives by foreign policy and national security interests and the consequent regular intervention of the US government in launch decisions. The ability of Arianespace successfully to compete in a market severely distorted as a result of these interventions, including the encouragement of joint ventures between US and Russian or Ukrainian companies, is explained.  相似文献   

13.
This article examines the current legal status of commercial activities in space and describes the legislation — both national and international — existing for their regulation. The question of who is responsible for the action of non-governmental entities is thoroughly discussed, as is the notion of freedom of enterprise. Finally the author looks at the most commercialized areas of space activities — telecommunications and Earth observations — before drawing some conclusions on likely future trends in the privitization and regulation of space activities.  相似文献   

14.
A reusable launch vehicle could be developed early next century if the X-33 program is successful. Its development will be funded by industry, and the vehicle will be operated privately. A critical task is to assess the future market for such a vehicle. The total number of commercial payloads could range between 40 and 60 satellites per year, taking into account the market elasticity due to the launch price reduction. The RLV would face important competition from expendable launch vehicles. However, the RLV could capture two-thirds of this market, or 26–33 commercial payloads per year.  相似文献   

15.
Rapid development of Chinese commercial launch vehicles brings new challenges under the traditional systems engineering(TSE) working method. A new model-based systems engineering(MBSE) working method was proposed for Smart Dragon 1(SD-1), which is a low-cost commercial launch vehicle developed by the China Academy of Launch Vehicle Technology(CALT). Based on the characteristics of a commercial launch vehicle, the system model based on information cards was established. Through a problem-oriented working method, risk identification and management, the process of Card-MBSE was utilized and verified by the success of the maiden flight of SD-1. This paper introduces a new method and reference for the development of low-cost and high-reliability launch vehicles.  相似文献   

16.
NASA has created a plan to implement the Flexible Path strategy, which utilizes a heavy lift launch vehicle to deliver crew and cargo to orbit. In this plan, NASA would develop much of the transportation architecture (launch vehicle, crew capsule, and in-space propulsion), leaving the other in-space elements open to commercial and international partnerships. This paper presents a space exploration strategy that reverses that philosophy, where commercial and international launch vehicles provide launch services. Utilizing a propellant depot to aggregate propellant on orbit, smaller launch vehicles are capable of delivering all of the mass necessary for space exploration. This strategy has benefits to the architecture in terms of cost, schedule, and reliability.  相似文献   

17.
China's commercial space activities started from the launch of Asiasat-1 satellite by a LM-3 launch vehicle on April 7, 1990. As the leading force in China's space industry, CASC has been committed to commercial space for nearly 30 years. The article describes CASC's advantages and activities in commercial space sector, as well as outlook for CASC commercial space development. The author concludes CASC is willing to coordinate and cooperate with state-owned and private companies and will create a new pattern for commercial space, opening up a new industry for space development and achieving more splendid achievement.  相似文献   

18.
The feasibility of building commercial spaceports is being actively investigated in several countries. Potential benefits include boosting economic development and assisting the commercial launch industry. This report finds, however, that commercial spaceport development will probably not be capable of generating a large enough return on investment to attract private sector involvement without significant government assistance. It is also unlikely that the market for large launch vehicles will support spaceport development; however, small satellites may offer better prospects.  相似文献   

19.
The paper starts with a set of major requirements for a space tourism vehicle and discusses major vehicle options proposed for this purpose. It seems that the requirements can be met best with a Ballistic SSTO Vehicle which has the additional advantage of lowest development cost compared to other launch vehicle options — important for a commercial development venture.

The BETA Ballistic Reusable Vehicle Concept is characterized by the plug nozzle cluster engine configuration where the plug nozzle serves also as base plate and re-entry heat shield. In this case no athmospheric turn maneuver is required (as in case-of the front-entry Delta-Clipper DC-Y concept). In our specific case for space tourism this mode has the avantage that the forces at launch and reentry are in exactly the same direction, easing passenger seating arrangements. The second basic advantage is the large available volume on top of the vehicle providing ample space for passenger accomodation, visibility and volume for zero-g experience (free floating), one of the major passenger mission requirements. An adequate passenger cabin design for 100 passengers is presented, as well as the modern BETA-STV Concept with its mass allocations.  相似文献   


20.
从总体与导航制导控制的视角,对长征三号甲系列运载火箭发展与成就进行了分析和小结。长征三号甲系列运载火箭,在长征三号运载火箭解决我国发射高轨道卫星有无问题的基础上,历经基本能力、适应能力、高适应能力的发展,具备了高轨道大型卫星运载能力,突破了从单一轨道面到三维空间各种轨道发射、从高轨卫星转移轨道到工作轨道发射、从地球轨道到地月轨道发射以及从航天技术试验到高可靠工程应用发射等关键技术,使我国运载火箭整体能力取得了地球全轨道发射、星际轨道发射等跨越发展。航天重大工程和国际商业发射表明,该系列运载火箭已进入世界高轨道航天器发射的运载火箭前列,并奠定了进一步开拓发展的基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号