首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用高压DSC方法,研究了PET/N100粘合剂体系的固化过程,获得了该体系的动力学参数及反应机理函数,并比较了不同添加物对体系动力学参数的影响。结果表明,PET/N100固化体系的反应机理函数符合g(α)=-ln(1-α);为一级反应;固化反应机理函数不受各种添加物的影响,动力学参数受这些添加物的影响而发生变化。  相似文献   

2.
PET/N100粘合剂体系固化过程FTIR研究(Ⅰ)--TIR曲线   总被引:5,自引:3,他引:2  
采用了加热原位池/FTIR联用技术实时跟踪N100和环氧乙彬四氢呋喃共聚醚(PET)固化反应过程的方法,获得了固化度与温度的关系(TIR)曲线,研究了添加物及升温速率对固化体系的影响,发现催化刺对固化反应有明显的力口速作用,增塑荆的加入,使得固化反应的起始温度增加,终止温度降低,这些结果为固化TIR动力学的进一步研究提供了基本数据。  相似文献   

3.
采用高压DSC方法,研究了PET/N100粘合剂体系的固化过程,获得了该体系的动力学参数及反应机理函数,并比较了不同添加物对体系动力学参数的影响。结果表明,PET/N100固化体系的反应机理函数符合g(a)=-In(1-a);为一级反应;固化反应机理函数不受各种添加物的影响,动力学参数受这些添加物的影响而发生变化。  相似文献   

4.
为实现季戊四醇丙烯醛树脂(PEAR)/十二烷基苯磺酸(DBSA)体系在浇注PBX炸药中的应用以及获得该体系在工程应用中的工艺温度参数,采用粘度实验研究了体系的粘度特性,采用动态差示扫描量热法(DSC),通过模拟n级反应动力学模型、Kissinger微分法、Ozawa积分法以及Crane方程研究了体系的固化反应动力学。结果表明,50℃以上PEAR粘度几乎不受转速影响,PEAR与DBSA质量比大于25∶1,可保证浇注过程的顺利进行。PEAR/DBSA体系的凝胶化温度为345.92 K,固化温度为383.83 K,后处理温度为411.46 K。PEAR/DBSA体系固化反应为放热反应,反应的表观活化能为74.84 kJ/mol,指前因子为2.54×109min~(-1),反应级数为1.02,反应热为190.66 J/g。  相似文献   

5.
TDE-85环氧树脂固化动力学的DSC和DMA研究   总被引:4,自引:0,他引:4  
根据DSC和DMA测试曲线,分别用Kissinger、Flynn-Wall-Ozawa、Friedman-Reich-Levi模型计算了TDE-85/THPA环氧树脂体系的固化动力学参数。Kissering法所得活化能较低,其他几种计算方法所得活化能比较一致,相对误差在10%之内。将Gaussian分布应用于分峰法,计算了每个反应的动力学参数,模拟结果与DSC曲线具有很好的一致性。双峰表明,固化过程包含2个化学反应,缩水甘油脂基的反应活性比脂环基高。利用外推法确定了固化工艺为100℃/6 h 130℃/4 h 160℃/2 h。  相似文献   

6.
采用DSC法研究了不同升温速率下E51环氧树脂与ABO芳香胺固化体系的固化工艺、固化交联反应动力学参数及树脂体系的热性能。通过分析确定了树脂的基本固化工艺,采用Kissinger、Ozawa方法计算出树脂的表观活化能,其平均值为52.94 kJ/mol,结合Crane公式求出反应级数为1.1,固化反应动力学符合n级反应模型;测得玻璃化转变温度Tg=217℃,热失重曲线表明体系的起始分解温度为361℃。  相似文献   

7.
通过二正丁胺滴定法,分别对端羟基聚醚(PEG)/苯异氰酸酯(PI)、键合剂(NPBA)/PI、安定剂(MNA)/PI体系进行了反应动力学研究,得到了相应体系在不同温度下的反应速率常数及活化能,并分析了反应速率的影响因素及3种组分对固化体系网络结构的影响。结果表明,PEG/PI、键合剂/PI、安定剂/PI体系的固化反应都为二级反应,活化能分别为24.96、43.27、9.1 kJ/mol;反应速率的影响因素可能是溶剂和各组分的结构;3种组分对网络结构的影响可能是聚醚/N-100形成体系的基本网络结构,键合剂提高界面过渡层的交联密度,安定剂/N-100降低体系的交联密度。  相似文献   

8.
采用DSC研究了有机硅固化剂1,3-二氨丙基-1,1,3,3-四甲基二硅氧烷(DSX)与双酚F环氧树脂(BPFER)的固化动力学。BPFER/DSX体系的非等温固化反应曲线和dα/dt-t曲线表明,该反应符合自催化反应模型的基本特征。T-β曲线预测的固化工艺的凝胶温度、固化温度和后固化温度分别为36、87、138℃。采用E变量法分析得该体系的固化反应表观活化能为46.70~50.54 kJ/mol,与Starink、Kissinger、Ozawa、Boswell等方程的验证结果基本一致。采用E常量法求得该体系不同升温速率下的固化反应动力学方程,动力学方程预测值与实验值十分吻合。TG和DTG曲线表明,BPFER/DSX固化物的耐热性优于BPFER/DDM固化物。  相似文献   

9.
一种新型环氧树脂体系的固化动力学及耐热性研究   总被引:2,自引:1,他引:2  
通过不同升温速率下DSC研究了E51环氧树脂与DIA芳香胺固化体系的固化工艺、固化交联反应动力学参数及树脂体系的耐热性,利用FTIR方法计算了体系的固化度。通过分析确定了树脂的固化工艺,采用Kissinger、Ozawa法计算出树脂表观活化能,其均值为87.02kJ/mol,结合Crane公式求出反应级数为0.93。采用扭辫法测得玻璃化转变温度Tg=178℃。热失重曲线表明,体系的起始分解温度为364℃。  相似文献   

10.
采用品氏粘度计表征了室温下磷酸/糠酮树脂固化体系的粘度变化,采用热重(TGA)-差热(SDTA)同步分析仪测试了其固化过程,以研究固化剂含量和升温速率对其固化反应的影响。同时,采用一定工艺制备固化后的试样并进行验证。结果发现,即使在室温条件下,固化反应也在缓慢进行;固化剂含量为6.67%的固化体系固化后质量损失较小,表观比较致密;加热速率为2 K/min时,有利于固化反应的进行。在此基础上,采用Malek最大概然机理函数法求取固化反应动力学参数,建立了描述该体系固化反应的动力学模型。  相似文献   

11.
用热重(TG)及微商热重(DTG)研究了不同配比PU/P(MMA-EA)互穿体系在氮气气氛、不同升温速率的热分解反应过程。根据PU/P(MMA-EA)热解DTG曲线特点,将其热解过程分为两个阶段,用Kissinger法计算三种试样两个阶段的动力学参数,PU/P(MMA-EA)配比100/0,90/10,70/30在第一阶段活化能分别为114,102,88kJ/mol,在第二阶段活化能分别为153,223,218kJ/mol。用Ozawa法求得各阶段的平均活化能与Kissinger法计算结果一致。用积分法结合34种动力学函数判断该体系热分解的机理函数,并给出了结果。  相似文献   

12.
热分析-红外联用对PDADN热分解动力学的研究   总被引:1,自引:0,他引:1  
采用DSC-TG-FTIR等技术研究了PDADN热分解全过程,得到了分解气体产物红外特征相对吸收强度随时间或温度变化的“热-红”(TIR)曲线,建立了TIR曲线的非等温动力学处理方法,用Coats-Redfern方程和Ozawa方程计算获得了PDADN热分解气体产物生成的动力学参数和机理函数,从热分解各气体产物之间生成速率的“等动力学点”分析了PDADN的热分解机理。  相似文献   

13.
综合运用傅里叶红外仪、旋转型粘度计、量子化学计算等手段,研究了PET燃气发生剂体系中燃烧性能调节剂卡托辛(GFP)、氧化锌对PET燃气发生剂工艺性能的影响。结果表明,GFP对PET燃气发生剂工艺性能无影响,Zn O对PET燃气发生剂工艺性能有较大影响。单独的Zn O对PET/IPDI粘合剂体系固化催化作用不强,Zn O与燃气发生剂体系中的偶氮二甲酰胺配位后对PET/IPDI粘合剂体系、燃气发生剂体系中的聚氨酯固化反应均产生较强的正催化作用,是Zn O对PET燃气发生剂工艺性能影响的本质原因。  相似文献   

14.
采用一种超支化聚硅氧烷改性二烯丙基双酚A改性双马来酰亚胺体系,对固化树脂的增韧效果进行了研究,并通过DSC分析了改性树脂体系的固化反应及其动力学。结果表明,当超支化聚硅氧烷的添加量为10%时,浇注体冲击强度达到最大,比未改性体系提高了62.8%;采用非等温DSC研究体系的固化动力学,该体系固化反应分为两步,表观活化能分别为ΔE1=81.14 k J/mol,ΔE2=89.40 k J/mol;固化反应级数分别为n1=0.91,n2=0.91。  相似文献   

15.
为探索一种新型非异氰酸酯固化体系,以端羟基聚叠氮缩水甘油醚(GAP)为研究对象,三羟甲基丙烷三缩水甘油醚(TMPTGE)为固化剂,通过实验筛选出六亚甲基四胺(HA)为固化催化剂,对GAP/TMPTGE/HA固化体系进行了研究。通过拉伸试验、DMA试验,研究了固化参数R和固化时间对GAP/TMPTGE胶片力学性能的影响,借助非等温DSC法,研究了GAP/TMPTGE/HA体系的固化动力学特征,并通过TG实验对胶片热性能进行了表征。结果表明,随着固化参数R的增大,胶片的断裂伸长率先增加后降低,拉伸强度不断增大;R=3.0时,胶片断裂伸长率达到最大值98%,此时拉伸强度为0.67 MPa,玻璃化转变温度为-34.8℃;胶片热分解分为2个阶段,对应的分解峰温分别为250℃和350℃。  相似文献   

16.
以正己基三氯硅烷和苯乙炔为原料,通过Grignard反应成功制备正己基三苯乙炔基硅烷(NTPES)。采用傅里叶变换红外光谱(FTIR)和核磁共振波谱(1HNMR、13CNMR和29Si NMR)对NTPES单体结构进行表征。通过差示扫描量热仪(DSC)确定NTPES单体的固化工艺,采用4种动力学分析方法(Kissinger、Ozawa、Flynn-Wall-Ozawa和Friedman法)研究单体的固化动力学参数,并预测固化反应机理。实验结果表明,NTPES单体固化符合自催化反应机理,固化反应活化能为158.30 k J/mol;反应级数m=0.61; n=0.54;指前因子ln A=29.53 s-1,单体的热聚合主要发生炔键环化反应。  相似文献   

17.
利用LF-NMR研究燃速催化剂对推进剂固化反应的影响   总被引:1,自引:0,他引:1  
对分别加入0%、2%和4%燃速催化剂Ct的某推进剂A、B、C 3个体系,应用低场核磁共振技术(LF-NMR)分别在线监测50、60、70℃固化反应,通过聚合物氢质子横向弛豫时间T2进行固化反应动力学研究。结果显示,T2与体系固化反应程度有相关性,可在线监测样品固化反应的初期、中期和末期;3个体系在反应初期、中期均表现为一级动力学反应;各体系的反应初期的表观反应活化能Ea均大于反应中期,说明2个阶段的反应机理不同;提高固化温度能增加反应速率常数k、缩短固化时间,但不影响固化反应规则,没有改变交联网络的组成;同一固化温度下,随着Ct含量增大,k值增加、固化时间缩短,说明Ct对固化反应有催化作用,含量越高,催化作用越大,但过多的Ct会影响交联剂体系的链反应规则,一定程度上改变了推进剂的空间网络结构。  相似文献   

18.
构建了环氧乙烷-四氢呋喃共聚醚(PET)及常用固化剂多官能度异氰酸酯(N-100)、甲苯二异氰酸(TDI)和异佛尔酮二异氰酸(IPDI)的分子模型及无定形结构,采用分子动力学方法计算了这4种组分的溶度参数,并对组分纯物质间及混合体系组分间的径向分布函数进行了分析,采用共混方法计算了不同固化剂分别与PET组成的共混体系的共混能,得到了不同共混体系的共混结合能分布图。分析结果得到一致结论,PET与固化剂相容性优劣次序为PET/N-100PET/IPDIPET/TDI。结论与目前工程应用中普遍采取N-100作为NEPE推进剂的固化剂这一实际相吻合,验证了采用分子模拟方法从相容性能选择固化剂的可行性,该方法可预测不同组分的相容性,为固体推进剂的配方设计提供参考。  相似文献   

19.
基于密度泛函理论中的GGA/PBE和B3LYP方法,对高氯酸铵(AP)分解的质子转移过程及其分解产物引起的硝酸酯增塑聚醚(NEPE)推进剂固化体系PEG-TDI的氧化交联过程进行了分子模拟分析,以理清AP分解初始反应和NEPE推进剂中氧化交联反应机理。结果表明,分子结构和键离解能(BDE)计算结果显示,H4原子的转移是AP初始和再次质子转移过程的主要发生点; AP分解产物引起的PT氧化交联过程可划分为三个阶段:NO2分子引起的H原子夺取反应、O原子引起的氧化反应、交联反应; H原子夺取反应为NO2分子夺取PT分子的α—H、β—H,生成P1(—C·)和P2(—N·)两种带正电荷基团;氧化反应为O原子分别与P1和P2基团发生反应,生成P3(—C—O·)和P4(—N—O·)两种带负电荷基团;交联反应是在H原子夺取反应和氧化反应基础上发生的,最终生成—C—O—C—、—C—O—N—以及—N—O—N—三种结构链。  相似文献   

20.
HTPB与TDI固化的分子模拟研究   总被引:3,自引:0,他引:3  
为了提供固化反应的微观信息,运用Materials Studio 4.2分子模拟软件,构建HTPB和TDI分子模型,对HTPB和TDI固化进行分子动力学(MD)和合成(Synthia)模拟。分析了固化体系的构型、键长、X-射线散射图谱和弹性模量,结果表明,氰酸酯基(—NCO)中的N C双键变单键和羟基O—H断开,形成新化学键(—HNCOO—)生成氨基甲酸酯;HT-PB与TDI是一个自发进行的固化反应;HTPB-TDI固化体系的力学性能得到了改善,为HTPB-TDI固化研究提供了一种切实可行的新方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号