首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 454 毫秒
1.
2.
We review three distance measurement techniques beyond the local universe: (1) gravitational lens time delays, (2) baryon acoustic oscillation (BAO), and (3) HI intensity mapping. We describe the principles and theory behind each method, the ingredients needed for measuring such distances, the current observational results, and future prospects. Time-delays from strongly lensed quasars currently provide constraints on \(H_{0}\) with \(<4\%\) uncertainty, and with \(1\%\) within reach from ongoing surveys and efforts. Recent exciting discoveries of strongly lensed supernovae hold great promise for time-delay cosmography. BAO features have been detected in redshift surveys up to \(z\lesssim0.8\) with galaxies and \(z\sim2\) with Ly-\(\alpha\) forest, providing precise distance measurements and \(H_{0}\) with \(<2\%\) uncertainty in flat \(\Lambda\)CDM. Future BAO surveys will probe the distance scale with percent-level precision. HI intensity mapping has great potential to map BAO distances at \(z\sim0.8\) and beyond with precisions of a few percent. The next years ahead will be exciting as various cosmological probes reach \(1\%\) uncertainty in determining \(H_{0}\), to assess the current tension in \(H_{0}\) measurements that could indicate new physics.  相似文献   

3.
Determining the origin of volatiles on terrestrial planets and quantifying atmospheric loss during planet formation is crucial for understanding the history and evolution of planetary atmospheres. Using geochemical observations of noble gases and major volatiles we determine what the present day inventory of volatiles tells us about the sources, the accretion process and the early differentiation of the Earth. We further quantify the key volatile loss mechanisms and the atmospheric loss history during Earth’s formation. Volatiles were accreted throughout the Earth’s formation, but Earth’s early accretion history was volatile poor. Although nebular Ne and possible H in the deep mantle might be a fingerprint of this early accretion, most of the mantle does not remember this signature implying that volatile loss occurred during accretion. Present day geochemistry of volatiles shows no evidence of hydrodynamic escape as the isotopic compositions of most volatiles are chondritic. This suggests that atmospheric loss generated by impacts played a major role during Earth’s formation. While many of the volatiles have chondritic isotopic ratios, their relative abundances are certainly not chondritic again suggesting volatile loss tied to impacts. Geochemical evidence of atmospheric loss comes from the \({}^{3}\mathrm{He}/{}^{22}\mathrm{Ne}\), halogen ratios (e.g., F/Cl) and low H/N ratios. In addition, the geochemical ratios indicate that most of the water could have been delivered prior to the Moon forming impact and that the Moon forming impact did not drive off the ocean. Given the importance of impacts in determining the volatile budget of the Earth we examine the contributions to atmospheric loss from both small and large impacts. We find that atmospheric mass loss due to impacts can be characterized into three different regimes: 1) Giant Impacts, that create a strong shock transversing the whole planet and that can lead to atmospheric loss globally. 2) Large enough impactors (\(m_{\mathit{cap}} \gtrsim \sqrt{2} \rho_{0} (\pi h R)^{3/2}\), \(r_{\mathit{cap}}\sim25~\mbox{km}\) for the current Earth), that are able to eject all the atmosphere above the tangent plane of the impact site, where \(h\), \(R\) and \(\rho_{0}\) are the atmospheric scale height, radius of the target, and its atmospheric density at the ground. 3) Small impactors (\(m_{\mathit{min}}>4 \pi\rho_{0} h^{3}\), \(r_{\mathit {min}}\sim 1~\mbox{km}\) for the current Earth), that are only able to eject a fraction of the atmospheric mass above the tangent plane. We demonstrate that per unit impactor mass, small impactors with \(r_{\mathit{min}} < r < r_{\mathit{cap}}\) are the most efficient impactors in eroding the atmosphere. In fact for the current atmospheric mass of the Earth, they are more than five orders of magnitude more efficient (per unit impactor mass) than giant impacts, implying that atmospheric mass loss must have been common. The enormous atmospheric mass loss efficiency of small impactors is due to the fact that most of their impact energy and momentum is directly available for local mass loss, where as in the giant impact regime a lot of energy and momentum is ’wasted’ by having to create a strong shock that can transverse the entirety of the planet such that global atmospheric loss can be achieved. In the absence of any volatile delivery and outgassing, we show that the population of late impactors inferred from the lunar cratering record containing 0.1% \(M_{\oplus }\) is able to erode the entire current Earth’s atmosphere implying that an interplay of erosion, outgassing and volatile delivery is likely responsible for determining the atmospheric mass and composition of the early Earth. Combining geochemical observations with impact models suggest an interesting synergy between small and big impacts, where giant impacts create large magma oceans and small and larger impacts drive the atmospheric loss.  相似文献   

4.
The Origins, Spectral-Interpretation, Resource-Identification, Security and Regolith-Explorer (OSIRIS-REx) spacecraft supports all aspects of the mission science objectives, from extensive remote sensing at the asteroid Bennu, to sample collection and return to Earth. In general, the success of planetary missions requires the collection, return, and analysis of data, which in turn depends on the successful operation of instruments and the host spacecraft. In the case of OSIRIS-REx, a sample-return mission, the spacecraft must also support the acquisition, safe stowage, and return of the sample. The target asteroid is Bennu, a B-class near-Earth asteroid roughly 500 m diameter. The Lockheed Martin-designed and developed OSIRIS-REx spacecraft draws significant heritage from previous missions and features the Touch-and-Go-Sample-Acquisition-Mechanism, or TAGSAM, to collect sample from the surface of Bennu. Lockheed Martin developed TAGSAM as a novel, simple way to collect samples on planetary bodies. During short contact with the asteroid surface, TAGSAM releases curation-grade nitrogen gas, mobilizing the surface regolith into a collection chamber. The contact surface of TAGSAM includes “contact pads”, which are present to collect surface grains that have been subject to space weathering. Extensive 1-g laboratory testing, “reduced-gravity” testing (via parabolic flights on an airplane), and analysis demonstrate that TAGSAM will collect asteroid material in nominal conditions, and a variety of off-nominal conditions, such as the presence of large obstacles under the TAGSAM sampling head, or failure in the sampling gas firing. TAGSAM, and the spacecraft support of the instruments, are central to the success of the mission.  相似文献   

5.
OSIRIS-REx is the first NASA mission to return a sample of an asteroid to Earth. Navigation and flight dynamics for the mission to acquire and return a sample of asteroid 101955 Bennu establish many firsts for space exploration. These include relatively small orbital maneuvers that are precise to ~1 mm/s, close-up operations in a captured orbit about an asteroid that is small in size and mass, and planning and orbit phasing to revisit the same spot on Bennu in similar lighting conditions. After preliminary surveys and close approach flyovers of Bennu, the sample site will be scientifically characterized and selected. A robotic shock-absorbing arm with an attached sample collection head mounted on the main spacecraft bus acquires the sample, requiring navigation to Bennu’s surface. A touch-and-go sample acquisition maneuver will result in the retrieval of at least 60 grams of regolith, and up to several kilograms. The flight activity concludes with a return cruise to Earth and delivery of the sample return capsule (SRC) for landing and sample recovery at the Utah Test and Training Range (UTTR).  相似文献   

6.
The OSIRIS-REx Thermal Emission Spectrometer (OTES) will provide remote measurements of mineralogy and thermophysical properties of Bennu to map its surface, help select the OSIRIS-REx sampling site, and investigate the Yarkovsky effect. OTES is a Fourier Transform spectrometer covering the spectral range 5.71–100 μm (\(1750\mbox{--}100~\mbox{cm}^{-1}\)) with a spectral sample interval of \(8.66~\mbox{cm}^{-1}\) and a 6.5-mrad field of view. The OTES telescope is a 15.2-cm diameter Cassegrain telescope that feeds a flat-plate Michelson moving mirror mounted on a linear voice-coil motor assembly. A single uncooled deuterated l-alanine doped triglycine sulfate (DLATGS) pyroelectric detector is used to sample the interferogram every two seconds. Redundant ~0.855 μm laser diodes are used in a metrology interferometer to provide precise moving mirror control and IR sampling at 772 Hz. The beamsplitter is a 38-mm diameter, 1-mm thick chemical vapor deposited diamond with an antireflection microstructure to minimize surface reflection. An internal calibration cone blackbody target provides radiometric calibration. The radiometric precision in a single spectrum is \(\leq2.2 \times 10^{-8}~\mbox{W}\,\mbox{cm}^{-2}\,\mbox{sr} ^{-1}/\mbox{cm}^{-1}\) between 300 and \(1350~\mbox{cm}^{-1}\). The absolute integrated radiance error is \(<1\%\) for scene temperatures ranging from 150 to 380 K. The overall OTES envelope size is \(37.5 \times 28.9 \times 52.2~\mbox{cm}\), and the mass is 6.27 kg. The power consumption is 10.8 W average. OTES was developed by Arizona State University with Moog Broad Reach developing the electronics. OTES was integrated, tested, and radiometrically calibrated on the Arizona State University campus in Tempe, AZ.  相似文献   

7.
Pulsars are natural cosmic clocks. On long timescales they rival the precision of terrestrial atomic clocks. Using a technique called pulsar timing, the exact measurement of pulse arrival times allows a number of applications, ranging from testing theories of gravity to detecting gravitational waves. Also an external reference system suitable for autonomous space navigation can be defined by pulsars, using them as natural navigation beacons, not unlike the use of GPS satellites for navigation on Earth. By comparing pulse arrival times measured on-board a spacecraft with predicted pulse arrivals at a reference location (e.g. the solar system barycenter), the spacecraft position can be determined autonomously and with high accuracy everywhere in the solar system and beyond. We describe the unique properties of pulsars that suggest that such a navigation system will certainly have its application in future astronautics. We also describe the on-going experiments to use the clock-like nature of pulsars to “construct” a galactic-sized gravitational wave detector for low-frequency (\(f_{GW}\sim 10^{-9} \text{--} 10^{-7}\) Hz) gravitational waves. We present the current status and provide an outlook for the future.  相似文献   

8.
We report on the development of a passive sorption pump, capable of maintaining high-vacuum conditions in the InSight seismometer throughout the duration of any extended mission. The adsorber material is a novel zeolite-loaded aerogel (ZLA) composite, which consists of fine zeolite particles homogeneously dispersed throughout a porous silica network. The outgassing species within the SEIS evacuated container were analyzed and the outgassing rate was estimated by different methods. The results were used to optimize the ZLA composition to adsorb the outgassing constituents, dominated by water, while minimizing the SEIS bakeout constraints. The InSight ZLA composite additionally facilitated substantial CO2 adsorption capabilities for risk mitigation against external leaks in Mars atmosphere. To comply with the stringent particle requirements, the ZLA getters were packaged in sealed containers, open to the SEIS interior through \(1~\upmu\mbox{m}\)-size pore filters. Results from experimental validation and verification tests of the packaged getters are presented. The pressure forecast based on these data, corroborated by rudimentary in situ pressure measurements, infer SEIS operational pressures not exceeding \(10^{-5}~\mbox{mbar}\) throughout the mission.  相似文献   

9.
The relative abundances of chemical elements and isotopes have been our most effective tool in identifying and understanding the physical processes that control populations of energetic particles. The early surprise in solar energetic particles (SEPs) was 1000-fold enhancements in \({}^{3}\mbox{He}/{}^{4}\mbox{He}\) from resonant wave-particle interactions in the small “impulsive” SEP events that emit electron beams that produce type III radio bursts. Further studies found enhancements in Fe/O, then extreme enhancements in element abundances that increase with mass-to-charge ratio \(A/Q\), rising by a factor of 1000 from He to Au or Pb arising in magnetic reconnection regions on open field lines in solar jets. In contrast, in the largest SEP events, the “gradual” events, acceleration occurs at shock waves driven out from the Sun by fast, wide coronal mass ejections (CMEs). Averaging many events provides a measure of solar coronal abundances, but \(A/Q\)-dependent scattering during transport causes variations with time; thus if Fe scatters less than O, Fe/O is enhanced early and depleted later. To complicate matters, shock waves often reaccelerate impulsive suprathermal ions left over or trapped above active regions that have spawned many impulsive events. Direct measurements of ionization states \(Q\) show coronal temperatures of 1–2 MK for most gradual events, but impulsive events often show stripping by matter traversal after acceleration. Direct measurements of \(Q\) are difficult and often unavailable. Since both impulsive and gradual SEP events have abundance enhancements that vary as powers of \(A/Q\), we can use abundances to deduce the probable \(Q\)-values and the source plasma temperatures during acceleration, ≈3 MK for impulsive SEPs. This new technique also allows multiple spacecraft to measure temperature variations across the face of a shock wave, measurements otherwise unavailable and provides a new understanding of abundance variations in the element He. Comparing coronal abundances from SEPs and from the slow solar wind as a function of the first ionization potential (FIP) of the elements, remaining differences are for the elements C, P, and S. The theory of the fractionation of ions by Alfvén waves shows that C, P, and S are suppressed because of wave resonances during chromospheric transport on closed magnetic loops but not on open magnetic fields that supply the solar wind. Shock waves can accelerate ions from closed coronal loops that easily escape as SEPs, while the solar wind must emerge on open fields.  相似文献   

10.
Spatial, energy and angular distributions of ion fluxes in the Earth’s radiation belts (ERB) near the equatorial plane, at middle geomagnetic latitudes and at low altitudes are systematically reviewed herein. Distributions of all main ion components, from protons to Fe (including hydrogen and helium isotopes), and their variations under the action of solar and geomagnetic activity are considered. For ions with \(Z\geq 2\) and especially for ions with \(Z \geq 9\), these variations are much more than for protons, and these have no direct connection with the intensity of magnetic storms (\(Z\) is the charge of the atomic nucleus with respect to the charge of the proton). The main physical mechanisms for the generation of ion fluxes in the ERB and the losses of these ions are considered. Solar wind, Solar Cosmic Rays (SCR), Galactic Cosmic Rays (GCR), and Anomalous component of Cosmic Rays (ACR) as sources of ions in the ERB are considered.  相似文献   

11.
NASA’s InSight Mission will deploy two three-component seismometers on Mars in 2018. These short period and very broadband seismometers will be mounted on a three-legged levelling system, which will sit directly on the sandy regolith some 2–3 meters from the lander. Although the deployment will be covered by a wind and thermal shield, atmospheric noise is still expected to couple to the seismometers through the regolith. Seismic activity on Mars is expected to be significantly lower than on Earth, so a characterisation of the extent of coupling to noise and seismic signals is an important step towards maximising scientific return.In this study, we conduct field testing on a simplified model of the seismometer assembly. We constrain the transfer function between the wind and thermal shield and tripod-mounted seismometers over a range of frequencies (1–40 Hz) relevant to the deployment on Mars. At 1–20 Hz the displacement amplitude ratio is approximately constant, with a value that depends on the site (0.03–0.06). The value of the ratio in this range is 25–50% of the value expected from the deformation of a homogeneous isotropic elastic halfspace. At 20–40 Hz, the ratio increases as a result of resonance between the tripod mass and regolith. We predict that mounting the InSight instruments on a tripod will not adversely affect the recorded amplitudes of vertical seismic energy, although particle motions will be more complex than observed in recordings generated by more conventional buried deployments. Higher frequency signals will be amplified by tripod-regolith resonance, probably reaching peak-amplification at \(\sim 50\) Hz. The tripod deployment will lose sensitivity at frequencies \(>50\) Hz as a result of the tripod mass and compliant regolith.We also investigate the attenuation of seismic energy within the shallow regolith covering the range of seismometer deployment distances. The amplitude of surface displacement decays as \(r^{-n}\), where \(1.5 < n < 2\). This exceeds the value expected for a homogeneous isotropic elastic halfspace (\(n \sim 1\)), and reflects an increase in Young’s modulus with depth. We present an updated model of lander noise which takes this enhanced attenuation into account.  相似文献   

12.
The Regolith X-ray Imaging Spectrometer (REXIS) is the student collaboration experiment proposed and built by an MIT-Harvard team, launched aboard NASA’s OSIRIS-REx asteroid sample return mission. REXIS complements the scientific investigations of other OSIRIS-REx instruments by determining the relative abundances of key elements present on the asteroid’s surface by measuring the X-ray fluorescence spectrum (stimulated by the natural solar X-ray flux) over the range of energies 0.5 to 7 keV. REXIS consists of two components: a main imaging spectrometer with a coded aperture mask and a separate solar X-ray monitor to account for the Sun’s variability. In addition to element abundance ratios (relative to Si) pinpointing the asteroid’s most likely meteorite association, REXIS also maps elemental abundance variability across the asteroid’s surface using the asteroid’s rotation as well as the spacecraft’s orbital motion. Image reconstruction at the highest resolution is facilitated by the coded aperture mask. Through this operation, REXIS will be the first application of X-ray coded aperture imaging to planetary surface mapping, making this student-built instrument a pathfinder toward future planetary exploration. To date, 60 students at the undergraduate and graduate levels have been involved with the REXIS project, with the hands-on experience translating to a dozen Master’s and Ph.D. theses and other student publications.  相似文献   

13.
Retrieval of crustal structure and thickness of Mars is among the main goals of InSight. Here we investigate which constraints on the crust at the landing site can be provided by apparent P-wave incidence angles derived from P-receiver functions. We consider receiver functions for six different Mars models, calculated from synthetic seismograms generated via Instaseis from the Green’s function databases of the Marsquake Service, in detail. To allow for a larger range of crustal thicknesses and structures, we additionally analyze data from five broad-band stations across Central Europe. We find that the likely usable epicentral distance range for P-wave receiver functions on Mars lies between \(35^{\circ}\) and the core shadow, and can be extended to more than \(150^{\circ}\) by also using the PP-phase. Comparison to models for the spatial distribution of Martian seismicity indicates that sufficient seismicity should occur within the P-wave distance range around InSight within the nominal mission duration to allow for the application of our method. Apparent P-wave incidence angles are derived from the amplitudes of vertical and radial receiver functions at the P-wave onset within a range of period bands, up to 120 s. The apparent incidence angles are directly related to apparent S-wave velocities, which are inverted for the subsurface S-wave velocity structure via a grid search. The veracity of the forward calculated receiver functions and apparent S-wave velocities is ensured by benchmarking various algorithms against the Instaseis synthetics. Results indicate that apparent S-wave velocity curves provide valuable constraints on crustal thickness and structure, even without any additional constraints, and considering the location uncertainty and limited data quantity of InSight. S-wave velocities in the upper half of the crust are constrained best, but if reliable measurements at long periods are available, the curves also provide constraints down to the uppermost mantle. Besides, it is demonstrated that the apparent velocity curves can differentiate between crustal velocity models that are indistinguishable by other methods.  相似文献   

14.
Lauretta  D. S.  Balram-Knutson  S. S.  Beshore  E.  Boynton  W. V.  Drouet d’Aubigny  C.  DellaGiustina  D. N.  Enos  H. L.  Golish  D. R.  Hergenrother  C. W.  Howell  E. S.  Bennett  C. A.  Morton  E. T.  Nolan  M. C.  Rizk  B.  Roper  H. L.  Bartels  A. E.  Bos  B. J.  Dworkin  J. P.  Highsmith  D. E.  Lorenz  D. A.  Lim  L. F.  Mink  R.  Moreau  M. C.  Nuth  J. A.  Reuter  D. C.  Simon  A. A.  Bierhaus  E. B.  Bryan  B. H.  Ballouz  R.  Barnouin  O. S.  Binzel  R. P.  Bottke  W. F.  Hamilton  V. E.  Walsh  K. J.  Chesley  S. R.  Christensen  P. R.  Clark  B. E.  Connolly  H. C.  Crombie  M. K.  Daly  M. G.  Emery  J. P.  McCoy  T. J.  McMahon  J. W.  Scheeres  D. J.  Messenger  S.  Nakamura-Messenger  K.  Righter  K.  Sandford  S. A. 《Space Science Reviews》2017,212(1-2):925-984

In May of 2011, NASA selected the Origins, Spectral Interpretation, Resource Identification, and Security–Regolith Explorer (OSIRIS-REx) asteroid sample return mission as the third mission in the New Frontiers program. The other two New Frontiers missions are New Horizons, which explored Pluto during a flyby in July 2015 and is on its way for a flyby of Kuiper Belt object 2014 MU69 on January 1, 2019, and Juno, an orbiting mission that is studying the origin, evolution, and internal structure of Jupiter. The spacecraft departed for near-Earth asteroid (101955) Bennu aboard an United Launch Alliance Atlas V 411 evolved expendable launch vehicle at 7:05 p.m. EDT on September 8, 2016, on a seven-year journey to return samples from Bennu. The spacecraft is on an outbound-cruise trajectory that will result in a rendezvous with Bennu in November 2018. The science instruments on the spacecraft will survey Bennu to measure its physical, geological, and chemical properties, and the team will use these data to select a site on the surface to collect at least 60 g of asteroid regolith. The team will also analyze the remote-sensing data to perform a detailed study of the sample site for context, assess Bennu’s resource potential, refine estimates of its impact probability with Earth, and provide ground-truth data for the extensive astronomical data set collected on this asteroid. The spacecraft will leave Bennu in 2021 and return the sample to the Utah Test and Training Range (UTTR) on September 24, 2023.

  相似文献   

15.
Airless bodies are directly exposed to ambient plasma and meteoroid fluxes, making them characteristically different from bodies whose dense atmospheres protect their surfaces from such fluxes. Direct exposure to plasma and meteoroids has important consequences for the formation and evolution of planetary surfaces, including altering chemical makeup and optical properties, generating neutral gas and/or dust exospheres, and leading to the generation of circumplanetary and interplanetary dust grain populations. In the past two decades, there have been many advancements in our understanding of airless bodies and their interaction with various dust populations. In this paper, we describe relevant dust phenomena on the surface and in the vicinity of airless bodies over a broad range of scale sizes from \(\sim10^{-3}~\mbox{km}\) to \(\sim10^{3}~\mbox{km}\), with a focus on recent developments in this field.  相似文献   

16.
The NASA Ionospheric Connection Explorer Far-Ultraviolet spectrometer, ICON FUV, will measure altitude profiles of the daytime far-ultraviolet (FUV) OI 135.6 nm and N2 Lyman-Birge-Hopfield (LBH) band emissions that are used to determine thermospheric density profiles and state parameters related to thermospheric composition; specifically the thermospheric column O/N2 ratio (symbolized as \(\Sigma\)O/N2). This paper describes the algorithm concept that has been adapted and updated from one previously applied with success to limb data from the Global Ultraviolet Imager (GUVI) on the NASA Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) mission. We also describe the requirements that are imposed on the ICON FUV to measure \(\Sigma\)O/N2 over any 500-km sample in daytime with a precision of better than 8.7%. We present results from orbit-simulation testing that demonstrates that the ICON FUV and our thermospheric composition retrieval algorithm can meet these requirements and provide the measurements necessary to address ICON science objectives.  相似文献   

17.
The OSIRIS-REx Visible and Infrared Spectrometer (OVIRS) is a point spectrometer covering the spectral range of 0.4 to 4.3 microns (25,000–2300 cm?1). Its primary purpose is to map the surface composition of the asteroid Bennu, the target asteroid of the OSIRIS-REx asteroid sample return mission. The information it returns will help guide the selection of the sample site. It will also provide global context for the sample and high spatial resolution spectra that can be related to spatially unresolved terrestrial observations of asteroids. It is a compact, low-mass (17.8 kg), power efficient (8.8 W average), and robust instrument with the sensitivity needed to detect a 5% spectral absorption feature on a very dark surface (3% reflectance) in the inner solar system (0.89–1.35 AU). It, in combination with the other instruments on the OSIRIS-REx Mission, will provide an unprecedented view of an asteroid’s surface.  相似文献   

18.
NASA’s InSight lander will deploy a tripod-mounted seismometer package onto the surface of Mars in late 2018. Mars is expected to have lower seismic activity than the Earth, so minimisation of environmental seismic noise will be critical for maximising observations of seismicity and scientific return from the mission. Therefore, the seismometers will be protected by a Wind and Thermal Shield (WTS), also mounted on a tripod. Nevertheless, wind impinging on the WTS will cause vibration noise, which will be transmitted to the seismometers through the regolith (soil). Here we use a 1:1-scale model of the seismometer and WTS, combined with field testing at two analogue sites in Iceland, to determine the transfer coefficient between the two tripods and quantify the proportion of WTS vibration noise transmitted through the regolith to the seismometers. The analogue sites had median grain sizes in the range 0.3–1.0 mm, surface densities of \(1.3\mbox{--}1.8~\mbox{g}\,\mbox{cm}^{-3}\), and an effective regolith Young’s modulus of \(2.5^{+1.9}_{-1.4}~\mbox{MPa}\). At a seismic frequency of 5 Hz the measured transfer coefficients had values of 0.02–0.04 for the vertical component and 0.01–0.02 for the horizontal component. These values are 3–6 times lower than predicted by elastic theory and imply that at short periods the regolith displays significant anelastic behaviour. This will result in reduced short-period wind noise and increased signal-to-noise. We predict the noise induced by turbulent aerodynamic lift on the WTS at 5 Hz to be \(\sim2\times10^{-10}~\mbox{ms}^{-2}\,\mbox{Hz}^{-1/2}\) with a factor of 10 uncertainty. This is at least an order of magnitude lower than the InSight short-period seismometer noise floor of \(10^{-8}~\mbox{ms}^{-2}\,\mbox{Hz}^{-1/2}\).  相似文献   

19.
We give a brief review of the origin and acceleration of cosmic rays (CRs), emphasizing the production of CRs at different stages of supernova evolution by the first-order Fermi shock acceleration mechanism. We suggest that supernovae with trans-relativistic outflows, despite being rather rare, may accelerate CRs to energies above \(10^{18}\mbox{ eV}\) over the first year of their evolution. Supernovae in young compact clusters of massive stars, and interaction powered superluminous supernovae, may accelerate CRs well above the PeV regime. We discuss the acceleration of the bulk of the galactic CRs in isolated supernova remnants and re-acceleration of escaped CRs by the multiple shocks present in superbubbles produced by associations of OB stars. The effects of magnetic field amplification by CR driven instabilities, as well as superdiffusive CR transport, are discussed for nonthermal radiation produced by nonlinear shocks of all speeds including trans-relativistic ones.  相似文献   

20.
This article discusses relevant physical properties of the regolith at the Mars InSight landing site as understood prior to landing of the spacecraft. InSight will land in the northern lowland plains of Mars, close to the equator, where the regolith is estimated to be \(\geq3\mbox{--}5~\mbox{m}\) thick. These investigations of physical properties have relied on data collected from Mars orbital measurements, previously collected lander and rover data, results of studies of data and samples from Apollo lunar missions, laboratory measurements on regolith simulants, and theoretical studies. The investigations include changes in properties with depth and temperature. Mechanical properties investigated include density, grain-size distribution, cohesion, and angle of internal friction. Thermophysical properties include thermal inertia, surface emissivity and albedo, thermal conductivity and diffusivity, and specific heat. Regolith elastic properties not only include parameters that control seismic wave velocities in the immediate vicinity of the Insight lander but also coupling of the lander and other potential noise sources to the InSight broadband seismometer. The related properties include Poisson’s ratio, P- and S-wave velocities, Young’s modulus, and seismic attenuation. Finally, mass diffusivity was investigated to estimate gas movements in the regolith driven by atmospheric pressure changes. Physical properties presented here are all to some degree speculative. However, they form a basis for interpretation of the early data to be returned from the InSight mission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号