首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
航空   5篇
航天技术   1篇
航天   9篇
  2017年   1篇
  2014年   3篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2005年   2篇
  1975年   1篇
  1970年   2篇
排序方式: 共有15条查询结果,搜索用时 514 毫秒
1.
The equations derived by A. J. Rainal for the probability density function of the angle error output of a monopulse radar excited by a Gaussian signal and Gaussian thermal noise are generalized to include the presence of multiple targets. The examples given demonstrate the radar's behavior for various combinations of target and noise parameters.  相似文献   
2.
Lauretta  D. S.  Balram-Knutson  S. S.  Beshore  E.  Boynton  W. V.  Drouet d’Aubigny  C.  DellaGiustina  D. N.  Enos  H. L.  Golish  D. R.  Hergenrother  C. W.  Howell  E. S.  Bennett  C. A.  Morton  E. T.  Nolan  M. C.  Rizk  B.  Roper  H. L.  Bartels  A. E.  Bos  B. J.  Dworkin  J. P.  Highsmith  D. E.  Lorenz  D. A.  Lim  L. F.  Mink  R.  Moreau  M. C.  Nuth  J. A.  Reuter  D. C.  Simon  A. A.  Bierhaus  E. B.  Bryan  B. H.  Ballouz  R.  Barnouin  O. S.  Binzel  R. P.  Bottke  W. F.  Hamilton  V. E.  Walsh  K. J.  Chesley  S. R.  Christensen  P. R.  Clark  B. E.  Connolly  H. C.  Crombie  M. K.  Daly  M. G.  Emery  J. P.  McCoy  T. J.  McMahon  J. W.  Scheeres  D. J.  Messenger  S.  Nakamura-Messenger  K.  Righter  K.  Sandford  S. A. 《Space Science Reviews》2017,212(1-2):925-984

In May of 2011, NASA selected the Origins, Spectral Interpretation, Resource Identification, and Security–Regolith Explorer (OSIRIS-REx) asteroid sample return mission as the third mission in the New Frontiers program. The other two New Frontiers missions are New Horizons, which explored Pluto during a flyby in July 2015 and is on its way for a flyby of Kuiper Belt object 2014 MU69 on January 1, 2019, and Juno, an orbiting mission that is studying the origin, evolution, and internal structure of Jupiter. The spacecraft departed for near-Earth asteroid (101955) Bennu aboard an United Launch Alliance Atlas V 411 evolved expendable launch vehicle at 7:05 p.m. EDT on September 8, 2016, on a seven-year journey to return samples from Bennu. The spacecraft is on an outbound-cruise trajectory that will result in a rendezvous with Bennu in November 2018. The science instruments on the spacecraft will survey Bennu to measure its physical, geological, and chemical properties, and the team will use these data to select a site on the surface to collect at least 60 g of asteroid regolith. The team will also analyze the remote-sensing data to perform a detailed study of the sample site for context, assess Bennu’s resource potential, refine estimates of its impact probability with Earth, and provide ground-truth data for the extensive astronomical data set collected on this asteroid. The spacecraft will leave Bennu in 2021 and return the sample to the Utah Test and Training Range (UTTR) on September 24, 2023.

  相似文献   
3.
Collinear Earth–Moon libration points have emerged as locations with immediate applications. These libration point orbits are inherently unstable and must be maintained regularly which constrains operations and maneuver locations. Stationkeeping is challenging due to relatively short time scales for divergence, effects of large orbital eccentricity of the secondary body, and third-body perturbations. Using the Acceleration Reconnection and Turbulence and Electrodynamics of the Moon's Interaction with the Sun (ARTEMIS) mission orbit as a platform, the fundamental behavior of the trajectories is explored using Poincaré maps in the circular restricted three-body problem. Operational stationkeeping results obtained using the Optimal Continuation Strategy are presented and compared to orbit stability information generated from mode analysis based in dynamical systems theory.  相似文献   
4.
We present a new European Mars mission proposal to build on the UK-led Beagle2 Mars mission and continue its astrobiology-focussed investigation of Mars. The small surface element to be delivered to the Martian surface--Vanguard--is designed to be carried by a Mars Express-type spacecraft bus to Mars and adopts a similar entry, descent and landing system as Beagle2. The surface element comprises a triad of robotic devices--a lander, a micro-rover of the Sojourner class for surface mobility, and three ground-penetrating moles mounted onto the rover for sub-surface penetration to 5 m depth. The major onboard instruments on the rover include a Raman spectrometer/imager, a laser plasma spectrometer, an infrared spectrometer--these laser instruments provide the basis for in situ "remote" sensing of the sub-surface Martian environment within a powerful scientific package. The moles carry the instruments' sensor head array to the sub-surface. The moles are thus required to undergo a one-way trip down the boreholes without the need for recovery of moles or samples, eliminating much of the robotic complexity invoked by such operations.  相似文献   
5.
The output response of a matched filter for several cases of combined Barker codes is computed for various amounts of Doppler mismatch. It is shown that combined Barker codes, like conventional Barker codes, are extremely sensitive to Doppler shift.  相似文献   
6.
Libration point orbits may be ideal locations for satellite imaging formations. Therefore, control of these arrays in multi-body regimes is critical. A continuous feedback control algorithm is developed that maintains a formation of satellites in motion that is bounded relative to a halo orbit. This algorithm is derived based on the dynamic characteristics of the phase space near periodic orbits in the circular restricted three-body problem (CR3BP). By adjusting parameters of the control algorithm appropriately, satellites in the formation follow trajectories that are particularly advantageous to imaging arrays. Image reconstruction and coverage of the (u, v) plane are simulated for interferometric satellite configurations, demonstrating potential applications of the algorithm and the resulting motion.  相似文献   
7.
We launched a cryptoendolithic habitat, made of a gneissic impactite inoculated with Chroococcidiopsis sp., into Earth orbit. After orbiting the Earth for 16 days, the rock entered the Earth's atmosphere and was recovered in Kazakhstan. The heat of entry ablated and heated the rock to a temperature well above the upper temperature limit for life to below the depth at which light levels are insufficient for photosynthetic organisms ( approximately 5 mm), thus killing all of its photosynthetic inhabitants. This experiment shows that atmospheric transit acts as a strong biogeographical dispersal filter to the interplanetary transfer of photosynthesis. Following atmospheric entry we found that a transparent, glassy fusion crust had formed on the outside of the rock. Re-inoculated Chroococcidiopsis grew preferentially under the fusion crust in the relatively unaltered gneiss beneath. Organisms under the fusion grew approximately twice as fast as the organisms on the control rock. Thus, the biologically destructive effects of atmospheric transit can generate entirely novel and improved endolithic habitats for organisms on the destination planetary body that survive the dispersal filter. The experiment advances our understanding of how island biogeography works on the interplanetary scale.  相似文献   
8.
Like all applications in trajectory design, the design of solar sail trajectories requires a transition from analytical models to numerically generated realizations of an orbit. In astrodynamics, three numerical strategies are often employed. Differential correctors (also known as shooting methods) are perhaps the most common techniques. Finite-difference methods and collocation schemes are also employed and are successful in generating trajectories with pseudo-continuous control histories. These three numerical techniques are employed here to generate periodic trajectories displaced below the Moon in a circular restricted three-body system. All these approaches reveal trajectory options within the design space for solar sail applications.  相似文献   
9.
10.
Upcoming National Aeronautics and Space Administration (NASA) mission concepts include satellite arrays to facilitate imaging and identification of distant planets. These mission scenarios are diverse, including designs such as the terrestrial planet finder-occulter (TPF-O), where a monolithic telescope is aided by a single occulter spacecraft, and the micro-arcsecond X-ray imaging mission (MAXIM), where as many as 16 spacecraft move together to form a space interferometer. Each design, however, requires precise reconfiguration and star tracking in potentially complex dynamic regimes. This paper explores control methods for satellite imaging array reconfiguration in multi-body systems. Specifically, optimal nonlinear control and geometric control methods are derived and compared to the more traditional linear quadratic regulators, as well as input state feedback linearization. These control strategies are implemented and evaluated for the TPF-O mission concept.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号