首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
考虑横越磁尾不同区域的数密度与离子温度的分布特点,取宁静磁尾温度、密度呈同样形态的非均匀分布,作为模拟计算的初态,对初始By为不同分布的3个算例作模拟计算.数值结果展示了3类磁结构的演化特征.考察磁尾中性片一个给定点的磁场变化,做出3个算例典型事件的磁场矢端图.它们从另一个侧面展示了磁尾通量绳型等离子体团、具有复杂闭合磁力线位形类似于“闭合环”的等离子体团,以及二维“磁岛”型等离子体团的特点.观测表明,多数磁尾等离子体团为具有强核心场的通量绳结构.通过跟踪一个通量绳型等离子体团的发展,作出等离子体团各方向速度与磁场强度随x演化的曲线.其中,vx与磁场强度|B|在近尾至中尾的计算值与Geotail卫星资料统计分析结果大致相符.此外,与Jin等取初始温度为均匀分布的计算结果相比,本文给出的通量绳型等离子体团,其内温度较高、密度较低,与资料分析结果的偏离也随之减小.  相似文献   

2.
采用11B(p,α0)8Be核反应分析了B+注入锡青铜样品中的纵向浓度分布.该分布具有较宽的高浓度峰,表明样品表面可形成优良的改性层.讨论了提高核反应分析法深度分辨率的主要因素,指出减小入射质子束的能量分散度、提高探测系统的能量分辨率及增大B+的能损因子,是提高深度分辨率的主要途径.  相似文献   

3.
Geotail卫星的电场数据被用于分析近地磁尾等离子体片中电场在磁扰动(Dst<-25nT)和磁静时(Dst>-25 nT的统计分布.结果表明,伴随着地向高速离子流,在X>-16Re以内区域出现强电场(高达 5—8 mV/m).磁扰动期间强电场的幅值较磁静时大,并且出现在更靠近地球的位置.较强和较靠近地球的强电场与磁扰动时更薄的等离子体片和更接近地球的等离子体片内边界相联系.观测结果意味着磁扰动期间的亚暴可能更有效地将高能粒子注射到环电流中.这对磁暴和亚暴的关系问题的解决有重要意义.  相似文献   

4.
THEMIS卫星观测到通量传输事件(FTE)的同时,也在磁层侧涡流区域观测到强磁场扰动现象.利用快速傅里叶变换分析磁场扰动频谱特征发现:大约在FTE的扰动频率(约0.1Hz)处,功率谱密度达到峰值;在质子回旋频率(约1Hz)至64Hz的频段内,功率谱密度随着频率的增大而减小,服从幂律分布P0 f-α.因此,可以认为这些磁场扰动为低纬边界层中的动力学磁场湍流.研究结果表明,当低纬边界层(Low Latitude Boundary Layer,LLBL)中卫星相对磁层顶或FTE的位置越来越远时,功率谱密度与功率谱斜率α(幂律指数)降低,但FTE所在的方位角或低纬磁层顶的磁地方时对幂律指数α和功率谱密度没有显著影响.这些观测特征表明移动的FTE是磁场湍流的源.磁层顶上的大规模扰动(如FTE)和相关的磁场湍流从动力学尺度揭示了磁鞘与磁层的类黏滞相互作用.然而低纬边界层中FTE磁层侧涡流形成所需的黏滞性是否可由磁场湍流来提供还需要验证.   相似文献   

5.
采用线性回归的方法研究了太阳活动平静时期空间高能质子和重离子微分通量与地面OULU宇宙线台站中子强度之间的相关性,利用地面中子强度数据来反演空间高能质子和重离子通量.从质子和重离子的能谱出发,结合OULU台站中子强度的数据,提出了由地面中子强度数据反演空间高能质子和重离子微分通量的新方法.文中以GOES卫星上350~420 MeV,420~510 MeV,510~700 MeV,>700 MeV(P8~P11)四能道的高能质子和ACE卫星上的元素C为例,并将反演的数据与测量结果比较,二者符合较好.为了探索这种反演方法在空间辐射环境描述中的应用,同时利用2006年11月和12月质子通量的反演结果对反演方法进行了验证,证明利用这一反演方法可以从地面中子强度的数据很好地反演出空间质子和重离子的微分通量.   相似文献   

6.
对高TcBi-Pb-sr-Cu-Ca-O系氧化物超导材料的多晶块状、多晶粉末状和单晶等三种样品的Meissner效应和磁屏蔽效应进行了仔细测量和分析.块状样品具有较强的磁屏蔽能力,在ZFC(Zero-FieldCooled)和FC(FieidCooled)两种过程中,超导体的体积比之差最大约10%左右(μ0H≈200X10-4T);粉末样品和单晶样品的磁屏蔽能力很小(77K).  相似文献   

7.
采用^B(q,a0)^8Be核反应分析了B^+注入锡青铜样品中的纵向浓度分布,该分布具有较宽的高浓度峰,表明样品表面可形成优良的改性层,讨论了提高核反应分析法深度分辨率的主要因素,指出减小入射质子束的能量分散度、提高探测系统的能量分辨率及增大B^+的能损因子,是提高深度分辨率的主要途径。  相似文献   

8.
通常认为,同步轨道区的电子通量增加是由于磁暴或者上游太阳风高速流的扰动所引起.近来的观测表明,起源于太阳活动的行星际高能电子也是引起同步轨道电子通量增加的重要原因之一.Zhao等在研究2000年7月14日太阳剧烈活动时发现,同步轨道区相对论电子通量巨幅增加时没有观察到上游太阳风高速流的扰动,并且磁暴发生在电子通量事件之后.采用解析磁场模型和实际磁场模型(T96模型)模拟来自太阳的相对论电子在磁尾中的运动特性.计算结果表明,当行星际磁场南向时,进入到磁尾的行星际相对论电子可以从较远的磁尾区域运动到同步轨道区域.这一研究结果从理论上论证了起源于太阳活动的高能电子可以对同步轨道区相对论电子通量的增加产生重要的作用.  相似文献   

9.
电离层峰下结构的数值模拟   总被引:2,自引:3,他引:2  
在考虑由扩散与中性风引起的动力学输运与有原子离子O^+(^4S),O^+(^2D)与O^+(^2P)以及分子离子O2^+,NO^+,N2^+参加光化学反应的电离层-热层体系中,提出一个一维时变的电离层剖面数值模型,通过数值计算着重讨论了武昌地区F2层峰以下,尤其是E/F与F1/F2谷区的电离层形态与有关过程,得到如下结论:(1)对于原子离子,单一成分O^+(^4S)的光化学反应与输运,也有助于形成  相似文献   

10.
一个低纬电离层理论模式   总被引:7,自引:2,他引:7  
建立一个改进的低纬F层时变理论模式.采用沿磁力线分布的固定网格点,利用算子分裂方法求解离子连续性和动量方程,给出O+、N2+、O2+和NO+密度随纬度、高度变化的二维分布.对太阳活动高年的春分季节东亚区赤道异常日变化进行的模拟计算,较好地再现了赤道异常的典型特征.计算结果也表明HWM90模式给出的低纬夜间风速可能偏大;东亚区垂直漂移速度可能比美洲区的要小.  相似文献   

11.
根据SSO上两卫星搭载的三个PREM测得的空间中重离子LET谱,以及利用Weibull分布模型拟合出的不同器件的σ-LET曲线,对由空间中重离子引起的单粒子翻转的翻转率进行了预测估算.将预测值与实测值对比,分析了影响翻转率的因素.对于相同器件,翻转率与设备在卫星上的位置和朝向有关.位于卫星尾部面向后退(-x)方向的翻转率高于位于底部对地(+z)方向的器件翻转率;太阳活动水平高的时间段翻转率高于太阳活动水平低的时间段.探测器接收的重离子微分LET谱的强度和硬度决定了器件的单粒子翻转率.在高于翻转LET阈值时,LET谱的强度越高,其硬度和翻转率越大.不同器件的翻转率也不相同.   相似文献   

12.
空间高能质子和重离子是导致元器件发生单粒子效应的根本原因,为准确评估元器件在轨遭遇的单粒子效应风险,必须清楚高能质子、重离子与器件材料发生核反应的物理过程及生成的次级重离子LET(Line EnergyTransfer)分布规律。针对典型CMOS工艺器件模拟计算了不同能量质子和氦核粒子在器件灵敏单元内产生的反冲核、平均能量及线性能量转移值,并分析了半导体器件金属布线层中重金属对次级重离子LET分布的影响规律。计算结果表明:高能粒子与器件相互作用后产生大量次级重离子,且高能质子作用后产生的次级粒子的LET值主要分布为0~25MeV·cm2/mg;高能氦核粒子作用后产生的次级粒子的LET值主要分布为0~35 MeV·cm2/mg;有重金属钨(W)存在时能提高次级粒子的LET值,增加了半导体器件发生单粒子效应的概率,该研究结果可为元器件单粒子效应风险分析、航天器抗单粒子效应指标确定提供重要依据。  相似文献   

13.
日本宇宙开发委员会于1993年8月议定1994年度空间开发有关经费,根据空间有关的9个省厅的空间预算支出总额为2198亿日元,国库债务负担限额为1441亿日元,与1993年支出总额2016亿日元相比,1994年增长9%。各省厅增长的幅度不同,其中科学技术厅(宇宙开发事业团)为研制空间站日本舱以及用H-2火箭发射的卫星等增加8.6%;主要发射科学卫星的文部省增加4.28%;运输省研制多用途卫星及重复使用的运输系统增加27%;邮政省却增加71%。新立项的计划有;1.高分辨率观测技术卫星(HIROS)…  相似文献   

14.
赵明现 《空间科学学报》2022,42(6):1068-1078
以ACE卫星实时观测数据驱动的全球磁流体模拟为背景场,选取2003年10月22-24日行星际磁场(IMF)持续北向的事件,使用试验粒子方法,对太阳风粒子向磁层输运的过程进行模拟研究,分析北向IMF下太阳风粒子注入磁层过程中粒子在磁层内的空间分布和时间演化特征。IMF北向期间,进入环电流区域的粒子在晨侧区域的密度大于昏侧,且晨侧的粒子分布范围更广。背阳面磁鞘中的太阳风粒子可以通过低纬边界层进入磁层,但很难通过南北侧磁层顶进入磁层。进入磁尾的太阳风粒子聚集形成冷而密的等离子体片(CDPS),模拟中CDPS的空间分布和密度大小与观测数据符合。在IMF长时间北向期间,磁尾的粒子数量呈现随时间增长的趋势,并存在约20 min的小幅度准周期变化和约5~6 h的较大幅度的准周期变化。   相似文献   

15.
在机载情况下,多普勒展宽的时变杂波可以由相控阵雷达中的空间-时间处理器得到最佳的抑制。然而对于大型阵列的实时应用却很困难,这是由于这种空间-时间最优处理要求很高的计算量(大约为每次迭代O{(NM)^2},其中N为阵元数,M为时间采样数)。在本文中,首先通过杂波子空间分析证明了杂波自由度小于N+M,且单个多勒滤波器输出的杂波自由度很小,从而可以用一个仅有N+M个自由度的低阶处理器来实现最佳的杂波抑制  相似文献   

16.
1993年9月12日,美国东部夏令时间7时45分(格林尼治时间11时45分),美国发现号航天飞机从肯尼迪空间中心发射升空。这是美国航天飞机的第57次飞行和发现号航天飞机的第17次飞行。飞行任务代号STS-51。主要任务是;一、施放美国先进通信技术卫星(ACTS)。卫星本体重3吨,耗资3.63亿美元,由轨道科学公司和马丁·玛丽埃塔公司制造的转移轨道级(TOS)助推器价值1亿美元。按照设计,ACTS卫星传输数据的速度比现有的通信卫星快20倍,并可试验将地面接收天线直径缩小到1.5英尺(合0.46米)…  相似文献   

17.
利用Cluster四颗卫星的磁场探测数据计算磁尾场向电流并投影到极区电离层,研究其投影位置在南北半球的分布规律,统计过程中去除了强磁暴(磁暴主相Dst<–100 nT)期间的场向电流事件。结果显示:磁尾场向电流事件在极区投影位置的纬度分布具有明显的南北半球不对称性,北半球为单峰结构,南半球为双峰结构。在北半球投影到较低纬度(<64°)的场向电流事件数目明显多于南半球,并且所能达到的最低纬度更低;在南半球投影到较高纬度(>74°)的场向电流事件数目明显多于北半球,并且所能达到的最高纬度更高。地磁平静条件下(|AL|<100 nT),磁尾场向电流密度随磁地方时(MLT)呈递增趋势,这一结果与低高度卫星在极区对I区场向电流的探测结果符合很好。研究结果表明,磁尾场向电流投影位置的纬度分布呈现出明显的南北不对称性,这与南北半球磁尾场向电流的空间分布以及磁层中磁场结构具有密切关系。   相似文献   

18.
“嫦娥1号”(CE-1)、“嫦娥2号”(CE-2)都安装了1台太阳高能粒子探测器(High-energetic ParticlesDetectors,HPD)和2台太阳风离子探测器(Solar Wind Ion Detectors,SWIDs),进行了月球轨道200 km和100 km空间环境探测,获得了月球轨道空间高能带电粒子(质子、电子和重离子)能谱随时间的演化特征、等离子体与月球相互作用特征以及太阳风离子速度、密度和温度参量。空间环境探测数据分析结果表明:太阳活动低年、空间环境扰动水平相对较低、月球处于太阳风中时,近月空间带电粒子环境的基本特征与行星际空间相比变化不大。CE-1、CE-2在轨运行期间,发现了多起0.1~2 MeV能量电子急剧增加事件,这些事件发生在月球从太阳风运动到磁尾的所有空间区域,其中20%的事件伴随着卫星周围等离子体离子加速。模拟和统计研究表明:能量电子急剧增加使得绕月卫星和月球表面电位大幅下降导致了离子加速现象的发生;能量电子总流量大于1011 cm-2时,绕月卫星和月球表面充电电位可达负的上千伏。此外,月表溅射与反射太阳风离子、太阳风“拾起”离子等空间环境事件的发现,揭示了太阳风离子和月球存在复杂的相互作用过程。  相似文献   

19.
用SIMOX(Separationby Implanted Oxygen,即氧注入隔离)技术制备SOI-CMOS用的SOI(Silicon OnInsu lator,即绝缘体上长单晶硅膜)样品;对SOI样品红外吸收光谱的分析,从而计算了SOI结构材料中SiO2埋层的厚度;测试样品不同点的红外吸收光谱,可考察样品SiO2埋层厚度的不均匀性,据此,并可分析与之相关的SOI样品的质量参数.这种分析方法,是一种无损的检测手段,具有实用价值.  相似文献   

20.
在过去的30年中,印度已经研制并发射了一系列不断改进的通信卫星、科学卫星和遥感卫星。在西方人眼中,这似乎有点异常,奇怪一个如此落后的国家怎么能够研制和发射这么多的卫星。但在印度人看来,空间工业已经成为印度的一个组成部分。印度的每一个空间项目在开始时都必须经过论证,只有对印度经济发展有利的项目才能立项。为了发展印度的通信基础,提供TV频道和气象云图,印度空间研究组织(ISRO)发射了一系列多用途卫星──印度卫星(Insat);为了加强农业和土地利用,ISRO研制了遥感系列卫星──印度遥感卫星(IR…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号