首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 294 毫秒
1.
《Acta Astronautica》2008,62(11-12):1019-1028
In this paper, the concept of Orbit Transfer Vehicle for Deep Space Exploration (Deep Space OTV) is proposed, and its effectiveness and feasibility are discussed. Basic concept is the separation of two functions required for the deep space exploration, the transportation to the destination, and the exploration at the destination. Deep Space OTV is a spacecraft specialized for the transportation to the deep space destination. It is an expendable spacecraft propelled by solar electric propulsion. The payload of Deep Space OTV is Explorer, which is a spacecraft specialized for the exploration at the deep space destination. The effectiveness of the concept is discussed qualitatively, focused on the merits of the separations of two functions. The feasibility of Deep Space OTV is discussed based on the conceptual design of the spacecraft and its applicability to deep space missions. Several deep space missions are modeled and the payload capacity of Deep Space OTV is estimated. The missions include Asteroid rendezvous, Mars orbiter, Lunar lander, and so on.  相似文献   

2.
A new upper stage for the Shuttle called Orbiter Transfer Vehicle (OTV) is planned by the National Aeronautics and Space Administration (NASA) for a broad range of missions including transfer of very large spacecraft, unmanned and manned servicing at Geosynchronous orbit (GEO). Leading OTV configurations use 13 to 34 tonnes of cryogenic propellants in vehicles based on the existing Centaur or new designs. These OTVs can deliver to Geosynchronous orbit more than double the payload possible with the solid propellant Intertial Upper Stage (IUS), which is currently being developed. This high performance reduces the number of shuttle launches required to deliver a given total mass of payloads. After delivery of current size spacecraft, OTV could be returned to the Orbiter for reuse, saving the cost of building a new stage. OTV performance and flexibility will create the opportunity for the next generation of spacecraft such as Geostationary Platform. In these three ways, the high-performance OTV will provide economic benefits to Space Transportation Systems.  相似文献   

3.
In late 2006, NASA's Constellation Program sponsored a study to examine the feasibility of sending a piloted Orion spacecraft to a near-Earth object. NEOs are asteroids or comets that have perihelion distances less than or equal to 1.3 astronomical units, and can have orbits that cross that of the Earth. Therefore, the most suitable targets for the Orion Crew Exploration Vehicle (CEV) are those NEOs in heliocentric orbits similar to Earth's (i.e. low inclination and low eccentricity). One of the significant advantages of this type of mission is that it strengthens and validates the foundational infrastructure of the United States Space Exploration Policy and is highly complementary to NASA's planned lunar sortie and outpost missions circa 2020. A human expedition to a NEO would not only underline the broad utility of the Orion CEV and Ares launch systems, but would also be the first human expedition to an interplanetary body beyond the Earth–Moon system. These deep space operations will present unique challenges not present in lunar missions for the onboard crew, spacecraft systems, and mission control team. Executing several piloted NEO missions will enable NASA to gain crucial deep space operational experience, which will be necessary prerequisites for the eventual human missions to Mars.Our NEO team will present and discuss the following:
• new mission trajectories and concepts;
• operational command and control considerations;
• expected science, operational, resource utilization, and impact mitigation returns; and
• continued exploration momentum and future Mars exploration benefits.
Keywords: NASA; Human spaceflight; NEO; Near-Earth asteroid; Orion spacecraft; Constellation program; Deep space  相似文献   

4.
5.
The planned rate of up to 40 Space Shuttle missions per year from the Kennedy Space Center requires a matching payload processing capability that must be efficient and economical. Five facilities are being converted to handle spacecraft assembly and checkout, two to handle explosives and other dangerous spacecraft components, and one for total payload integration. New handling and transporting equipment is being built, and new procedures established. This paper presents an overview of the processing cycles of the two presently known types of payloads, their integration into Shuttle-ready cargos, and the installation of the cargo into the Space Shuttle Orbiter.  相似文献   

6.
In the past, one of the major problems in performing scientific investigations in space has been the high cost of developing, integrating, and transporting scientific experiments into space. The limited resources of unmanned spacecraft, coupled with the requirements for completely automated operations, was another factor contributing to the high costs of scientific research in space. In previous space missions after developing, integrating and transporting costly experiments into space and obtaining successful data, the experiment facility and spacecraft have been lost forever, because they could not be returned to earth. The objective of this paper is to present how the utilization of the Spacelab System will result in cost benefits to the scientific community, and significantly reduce the cost of space operations from previous space programs.The following approach was used to quantify the cost benefits of using the Spacelab System to greatly reduce the operational costs of scientific research in space. An analysis was made of the series of activities required to combine individual scientific experiments into an integrated payload that is compatible with the Space Transportation System (STS). These activities, including Shuttle and Spacelab integration, communications and data processing, launch support requirements, and flight operations were analyzed to indicate how this new space system, when compared with previous space systems, will reduce the cost of space research. It will be shown that utilization of the Spacelab modular design, standard payload interfaces, optional Mission Dependent Equipment (MDE), and standard services, such as the Experiment Computer Operating System (ECOS), allow the user many more services than previous programs, at significantly lower costs. In addition, the missions will also be analyzed to relate their cost benefit contributions to space scientific research.The analytical tools that are being developed at MSFC in the form of computer programs that can rapidly analyze experiment to Spacelab interfaces will be discussed to show how these tools allow the Spacelab integrator to economically establish the payload compatibility of a Spacelab mission.The information used in this paper has been assimilated from the actual experience gained in integrating over 50 highly complex, scientific experiments that will fly on the Spacelab first and second missions. In addition, this paper described the work being done at the Marshall Space Flight Center (MSFC) to define the analytical integration tools and techniques required to economically and efficiently integrate a wide variety of Spacelab payloads and missions. The conclusions reached in this study are based on the actual experience gained at MSFC in its roles of Spacelab integration and mission managers for the first three Spacelab missions. The results of this paper will clearly show that the cost benefits of the Spacelab system will greatly reduce the costs and increase the opportunities for scientific investigation from space.  相似文献   

7.
Cosmic Study Group SG 3.19/1.10 was established in February 2013 under the aegis of the International Academy of Astronautics to consider and compare the dose limits adopted by various space agencies for astronauts in Low Earth Orbit. A preliminary definition of the limits that might later be adopted by crews exploring Beyond Low Earth Orbit was, in addition, to be made. The present paper presents preliminary results of the study reported at a Symposium held in Turin by the Academy in July 2013. First, an account is provided of exposure limits assigned by various partner space agencies to those of their astronauts that work aboard the International Space Station. Then, gaps in the scientific and technical information required to safely implement human missions beyond the shielding provided by the geomagnetic field (to the Moon, Mars and beyond) are identified. Among many recommendations for actions to mitigate the health risks potentially posed to personnel Beyond Low Earth Orbit is the development of a preliminary concept for a Human Space Awareness System to: provide for crewed missions the means of prompt onboard detection of the ambient arrival of hazardous particles; develop a strategy for the implementation of onboard responses to hazardous radiation levels; support modeling/model validation that would enable reliable predictions to be made of the arrival of hazardous radiation at a distant spacecraft; provide for the timely transmission of particle alerts to a distant crewed vehicle at an emergency frequency using suitably located support spacecraft. Implementation of the various recommendations of the study can be realized based on a two pronged strategy whereby Space Agencies/Space Companies/Private Entrepreneurial Organizations etc. address the mastering of required key technologies (e.g. fast transportation; customized spacecraft design) while the International Academy of Astronautics, in a role of handling global international co-operation, organizes complementary studies aimed at harnessing the strengths and facilities of emerging nations in investigating/solving related problems (e.g. advanced space radiation modeling/model validation; predicting the arrivals of Solar Energetic Particles and shocks at a distant spacecraft). Ongoing progress in pursuing these complementary parallel programs could be jointly reviewed bi-annually by the Space Agencies and the International Academy of Astronautics so as to maintain momentum and direction in globally progressing towards feasible human exploration of interplanetary space.  相似文献   

8.
《Acta Astronautica》2010,66(11-12):1689-1697
In late 2006, NASA's Constellation Program sponsored a study to examine the feasibility of sending a piloted Orion spacecraft to a near-Earth object. NEOs are asteroids or comets that have perihelion distances less than or equal to 1.3 astronomical units, and can have orbits that cross that of the Earth. Therefore, the most suitable targets for the Orion Crew Exploration Vehicle (CEV) are those NEOs in heliocentric orbits similar to Earth's (i.e. low inclination and low eccentricity). One of the significant advantages of this type of mission is that it strengthens and validates the foundational infrastructure of the United States Space Exploration Policy and is highly complementary to NASA's planned lunar sortie and outpost missions circa 2020. A human expedition to a NEO would not only underline the broad utility of the Orion CEV and Ares launch systems, but would also be the first human expedition to an interplanetary body beyond the Earth–Moon system. These deep space operations will present unique challenges not present in lunar missions for the onboard crew, spacecraft systems, and mission control team. Executing several piloted NEO missions will enable NASA to gain crucial deep space operational experience, which will be necessary prerequisites for the eventual human missions to Mars.Our NEO team will present and discuss the following:
  • •new mission trajectories and concepts;
  • •operational command and control considerations;
  • •expected science, operational, resource utilization, and impact mitigation returns; and
  • •continued exploration momentum and future Mars exploration benefits.
  相似文献   

9.
李海涛  周欢  张晓林 《宇航学报》2018,39(2):147-157
针对深空导航不断提高的测角精度需求和传统无线电干涉测量技术所面临的局限,介绍了相位参考干涉技术用于深空导航的优势,重点分析了该技术的基本原理和两个关键观测参数的影响,综述了该技术在国外的研究进展情况,最后介绍了我国开展该技术研究的软硬件基础和利用嫦娥三号任务数据开展的相位参考干涉测量试验情况,试验结果表明了基于我国深空测控资源开展该技术研究的可行性和高精度,有助于推动该技术转向实际工程应用,提高我国深空导航无线电干涉测量水平。  相似文献   

10.
为解决失重环境对航天员生理健康的影响,在调研国内外重力飞行器研究现状的基础上,结合重力模拟飞行器的原理及人造重力舒适度影响因素,提出了一种通过自旋产生人造重力的深空探测飞行器方案设想。最后给出了重力模拟飞行器建设的实施规划、总体方案、在轨组装流程及技术难点。深空探测重力模拟飞行器稳定运转可为空间工作生活的航天员提供与地面无异的重力环境,将为执行深空探测任务提供必要的环境保障。  相似文献   

11.
空间环境是影响航天器可靠性的重要因素。与地球轨道航天器相比,行星际探测任务可能会遭受更加恶劣的空间环境,例如极端温度环境,辐射环境,腐蚀性大气环境、宇宙尘等,再加上行星际任务寿命长,采用先进的器件和材料,空间环境对行星际探测器的可靠性构成严重的威胁,直接关系到探测目标能否实现。因此考虑空间环境对行星际探测器的影响,开展相关的预先研究无论是对于制定行星际空间探测计划,还是搭载仪器的设计都具有非常重要的意义。文章分析了极端温度、辐射环境和行星表面综合环境对探测器的影响,并对开展相关研究提出了建议。  相似文献   

12.
The current emphasis on smaller, faster, cheaper (SFC) spacecraft in NASA’s solar system exploration program is the product of a number of interacting – even interdependent – factors. The SFC concept as applied to NASA’s solar system exploration program can be viewed as the vector sum of (1) the space science community’s desire for more frequent planetary missions to plug the data gaps, educate the next generation of scientists, provide missions to targets of opportunity, and enable programmatic flexibility in times of budgetary crisis; (2) the poor publicity garnered by NASA in the early 1990s and the resultant atmosphere of public criticism (creating an opportunity for reform); (3) The Strategic Defense Initiative Organization’s and the National Space Council community’s desire to advance the Space Exploration Initiative and their perception that the NASA culture at the time represented a barrier to the effective pursuit of space exploration; (4) the effective leadership of NASA Administrator Daniel Goldin; and (5) the diminishing budget profile for space sciences in the early 1990s. This paper provides a summary of the origin of the smaller, faster, cheaper approach in the planetary program. A more through understanding of the history behind this policy will enable analysts to assess more accurately the relative successes and failures of NASA’s new approach to solar system exploration.  相似文献   

13.
为了支持月球、火星等探测任务,我国正在组织开展深空干涉测量信号处理中心的建设工作。在嫦娥二号卫星在轨运行期间,利用连接单元干涉测量系统对卫星下行的数传信号进行采集记录,应用自行开发的数据处理软件获得了清晰的干涉条纹,同时时延计算结果与理论轨道具有较高的一致性,精度优于纳秒级。测轨实验验证了数据处理算法的正确性,证明了应用连接单元干涉技术进行卫星测轨的可行性。文章的分析和结论可为后续深入开展深空干涉测量信号处理中心建设提供技术储备。  相似文献   

14.
The deep space 1 extended mission   总被引:2,自引:0,他引:2  
The primary mission of Deep Space 1 (DS1), the first flight of the New Millennium program, completed successfully in September 1999, having exceeded its objectives of testing new, high-risk technologies important for future space and Earth science missions. DS1 is now in its extended mission, with plans to take advantage of the advanced technologies, including solar electric propulsion, to conduct an encounter with comet 19P/Borrelly in September 2001. During the extended mission, the spacecraft's commercial star tracker failed; this critical loss prevented the spacecraft from achieving three-axis attitude control or knowledge. A two-phase approach to recovering the mission was undertaken. The first involved devising a new method of pointing the high-gain antenna to Earth using the radio signal received at the Deep Space Network as an indicator of spacecraft attitude. The second was the development of new flight software that allowed the spacecraft to return to three-axis operation without substantial ground assistance. The principal new feature of this software is the use of the science camera as an attitude sensor. The differences between the science camera and the star tracker have important implications not only for the design of the new software but also for the methods of operating the spacecraft and conducting the mission. The ambitious rescue was fully successful, and the extended mission is back on track.  相似文献   

15.
小行星俘获(ACR)任务是美国Keck空间研究中心发起的一项深空探测任务。该任务计划选定一颗近地小行星,通过口袋式抓捕系统对其实施抓捕,并于2025年左右将其带回近月空间。文章介绍了ACR任务的内容和系统设计,具体包括:航天器总体构型、抓捕分系统、探测识别分系统和控制与推进分系统;对小行星抓捕的目标探测与识别、旋转匹配、抓捕、消旋、轨道转移等核心操作。基于ACR任务,提出了空间目标俘获技术的需求与应用、抓捕航天器系统设计的启示;基于我国目前的技术研究情况,总结分析了发展空间目标俘获任务所需的关键技术,如大功率柔性太阳翼、长时间大范围轨道机动、目标探测与识别、快速机动、目标抓捕与消旋。  相似文献   

16.
火星载人探测中辐射防护综述   总被引:1,自引:0,他引:1  
火星探测是人类太空探索的重要组成部分,火星载人探测中航天员的辐射安全问题是人们最为关心的问题。文章扼要介绍了美国/俄罗斯火星载人探测技术的发展过程,重点阐述了探测中的辐射环境、辐射效应以及国外探测结果;在此基础上,对火星探测中的辐射剂量进行了预示,提出了辐射防护建议。  相似文献   

17.
刘磊  陈明  张哲  刘勇  马传令 《宇航学报》2019,40(8):849-860
面向未来月球和深空探测任务的需求,调研了地月平动点应用与研究的国内外现状与进展,着重分析了近年来的研究方向、研究内容、技术方法与特点,提出了面向未来月球和深空探测任务的地月平动点应用构想,梳理总结了需解决的相应关键技术,可为未来平动点相关研究与应用提供有益借鉴,以及为我国后续月球和深空探测任务的规划与论证提供参考。  相似文献   

18.
在轨释放、分离载荷动力学仿真研究   总被引:2,自引:1,他引:1  
某些航天器需要在飞行过程中释放、分离载荷,由此涉及的动力学问题,关系到航天器平台与载荷的控制。文章主要对此类航天器的多体动力学问题进行研究,基于机械系统动力学仿真分析(ADAMS)软件平台建立了包括航天器平台、载荷和两类分离机构等在内的仿真模型,通过对三种在轨释放、分离载荷方案的分离过程动力学仿真结果对比分析以及参数化仿真分析,为载荷释放、分离方案设计提供参考。  相似文献   

19.
航天器力学环境分析与条件设计研究进展   总被引:9,自引:0,他引:9  
航天器力学环境条件是航天器及其部组件设计和地面试验验证的主要依据,直接影响着航天器的总体设计水平。随着我国航天事业的飞速发展,对航天器及其有效载荷的设计提出了越来越高的要求,而力学环境分析与条件设计技术已经成为制约我国航天器荷载比提高的瓶颈技术。本文重点针对航天器力学环境分析与条件设计技术所涉及的航天器力学环境预示理论方法,高精度有限元建模与模型修正技术以及航天器力学环境条件设计技术三个方面国内外研究进展进行了回顾,特别是对近五年来我国航天工业部门在航天器力学环境分析与条件设计领域取得的成就进行了综合评述。在此基础上,结合我国航天工程的实际需求,分析指出了今后在航天器力学环境分析与条件设计领域的主要研究方向。  相似文献   

20.
吴德隆  彭伟斌 《宇航学报》2004,25(2):123-126,146
从一个天地往返飞行器的上升轨道和再入返回轨道的优化,以及适用不同飞行任务的变轨要求的气动外形问题,提出一项基于气动力辅助变轨的变气动外形飞行器的新概念研究。对于一个固定气动外形飞行器要同时满足上升轨道有效载荷最大和再入轨道热流峰值、过载峰值及机动性能约束下的成本最低往往是困难的。若同时满足不同飞行任务:飞往太空站的运输任务,空间拦截和交会机动巡航任务及星际探测任务,则更为困难,实际上是不可能的。文章研究基于气动力辅助变轨,在热流约束下,气动外形参数变化对最优控制的影响。其结论为:热流约束下的最优控制解,包括考虑推力协同变轨,除了在非约束弧的滚转角不直接受气动外形影响外,其余的控制律,升力系数和滚转角都是气动外形参数和攻角的函数。因而变气动外形可作为一项新技术,即通过气动外形参数变化和相应的变轨策略而获得性能和成本都最佳的用途很广的一种新型飞行器。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号