首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
采用伪谱法对微小卫星气动力辅助变轨问题进行研究,在考虑热流限制、控制约束的条件下进行优化设计,得到微小卫星气动力辅助变轨的最优控制解。在此基础上,通过改变转移轨道的近地点高度,得到卫星的另一组飞行轨迹。比较这2组飞行轨迹,分析了转移轨道近地点高度对气动力辅助变轨的影响:近地点高度越高,依靠气动力辅助所能改变的轨道倾角越小,但是可以减小飞行过程中的最大过载、最大动压和最大驻点热流,因此在微小卫星的总体设计中应该综合考虑任务需求来确定转移轨道近地点的高度。  相似文献   

2.
X-37B是美国波音公司制造的一种可重复使用无人升力体飞行器,其具体任务一直备受关注和猜测。X-37B轨道试验飞行器曾多次进行轨道面内和面外机动。外界猜测X-37B可能降低轨道高度,进入有稀薄大气的高度,利用气动力大幅度横跨轨道飞行。文章分析了气动力辅助异面变轨的过程,其中在大气层内飞行段通过调整倾侧角实现侧向机动,从而改变轨道倾角。利用计算流体动力学软件计算其在高马赫数值下的气动力,为大气层内飞行动力学模型提供输入,推导气动力辅助异面变轨特征速度和推进剂消耗量的计算方法。针对不同再入角进行气动力辅助异面变轨仿真,计算轨道倾角改变量、特征速度和推进剂消耗量,并与冲量变轨比较。结果表明:类X-37B飞行器气动力辅助变轨在理论上具备一定改变轨道倾角的能力,但比冲量变轨消耗更多推进剂,变轨过程所需时间较长,相比于冲量变轨难度增大,工程实施可行性值得商榷。  相似文献   

3.
飞行器热气动布局优化设计研究   总被引:1,自引:0,他引:1  
唐伟  桂业伟  王安龄 《宇航学报》2009,30(5):1803-1807
开展飞行器热气动布局设计方法研究,初步建立了高速飞行器概念设计阶段的热气动布局优化设计方法,通过参数化布局设计技术、气动力、热环境、弹道及优化技术等多学科性能分析及优化方法的综合应用,进行飞行器的热气动布局设计。对带控制舵钝双锥体机动飞行器的设计研究表明,考虑热环境的热气动布局可以在保证升阻比不变的条件下,降低驻点及第二锥身等特征点的轨道峰值热流达30%以上。
  相似文献   

4.
战略武器的发展,要求进一步提高再入飞行器的突防能力、生存力和命中精度。现代高级再入飞行器主要是高β(弹道系数)再入的弹道式再入飞行器和机动武再入飞行器。本文所讨论的再入问题,就是指高级再入飞行器再入地球的大气层时所遇到的问题,整个再入系统虽然还包括材料、结构、遥测、控制等其它方面。但是再入动力学和气动热力学是再入系统的最重要问题之一,本文着重讨论这方面的现状、存在问题和解决问题的技术途径。 再入气动力学和气动热力学的主要问题是烧蚀防热问题,气动力问题,粒子云侵蚀问题,滚动问题,机动再入问题和再入物理等问题。解决这些问题要采用理论和实验相结合的方法,依靠理论计算、地面模拟试验和飞行试验等手段,通过综合分析提高设计计算的精度,寻找有效的措施保证性能要求。  相似文献   

5.
再入飞行器优化气动布局研究   总被引:6,自引:2,他引:6  
本文研究了再入飞行器的优化气动布局问题,提出了单目标和多目标、优化设计方法。通过研究分析,指出了具有高机动性能的带翼机动再入飞行器、弯体机动再入飞行器及带翼锥柱裙机动再入飞行器等再入飞行器的几何参数变化规律。该研究对这类再入飞行器的气动布局选型有重要的参考价值。  相似文献   

6.
研究机动再入飞行器的制导控制问题。为了解决机动再入飞行器气动系数变化范围大、气动耦合严重和气动参数非线性过零常值大等恶劣条件下的控制,并且能充分利用飞行器可测量信息提高系统自适应能力,本文提出了状态方程参数辨识--极点配置--前馈补偿自适应控制的飞行控制系统的设计方法。通过对新型号再入飞行器的制导系统仿真,可以看出该控制系统使其有很好的飞行性能。  相似文献   

7.
气动力辅助变轨技术可以有效利用大气资源,借助气动力作用减少推进剂消耗,有可能成为未来有大气行星进入/再入飞行的重要手段之一。文章针对改变轨道平面的变轨过程,进行气动力辅助异面变轨分析,探讨了初始轨道高度对气动力辅助异面变轨性能的影响。计算气动力辅助变轨特征速度,并与冲量变轨所需消耗能量进行比较。研究结果表明:气动力辅助异面变轨推进剂消耗量与升阻比呈非线性变化,当升阻比大于某一数值时,气动力辅助异面变轨在一定初始轨道高度区间内能够节省推进剂。文章的研究成果可为有翼再入航天器的研制提供依据,为气动力辅助变轨的工程应用提供技术参考。  相似文献   

8.
针对类Clipper再入返回飞行器的气动特性,采用近似反设计的方法,在飞行器外包络等约束条件下,通过形状控制函数,计算出类Clipper飞船的气动外形。基于计算流体动力学(CFD)数值模拟方法,研究分析类Clipper再入返回飞行器在不同高度、不同马赫数和不同攻角下的全空域/速域气动特性变化规律,并结合不同飞行状态下的压心位置探讨飞行器的稳定性。结果表明:类Clipper再入返回飞行器在不同飞行状态下能够具有良好的气动特性,最大升阻比可达1.1以上,属于中等升阻比再入,总体呈现出良好的静稳定性,可在未来作为具有可重复使用再入返回飞行器的方案之一。  相似文献   

9.
再人飞行器优化气动布局研究   总被引:1,自引:0,他引:1  
唐伟  张鲁民 《宇航学报》1994,15(3):64-70
本文研究了再入飞行器的优化气动布局问题,提出了单目标和多目标优化设计方法,通过研究分析,指出了具有高机动性能的带翼机动再入飞行器,弯体机动再入飞行器及带翼锥柱裙机动再入飞行器等再入飞行器的几何数变化规律,该研究对这类再入飞行器的气动布局选型有重要的参考价值。  相似文献   

10.
航天器异面气动力辅助变轨大气飞行段的最优轨迹   总被引:2,自引:0,他引:2  
本文研究航天器利用气动力辅助变轨实现由远地轨道向近地轨道异面转移问题,就航天器利用大气飞行实现减速及轨道平面机动提出了一种考虑过程约束存在时的优化设计方法。通过方案设计将函数优化问题转换成参数优化问题,并利用美国航天飞机数据进行了模拟计算,得到满意结果。  相似文献   

11.
This paper deals with the determination of optimal trajectories for the aeroassisted flight experiment (AFE). The intent of this experiment is to simulate a GEO-to-LEO transfer, where GEO denotes a geosynchronous Earth orbit and LEO denotes a low Earth orbit. Specifically, the AFE spacecraft is released from the Space Shuttle and is accelerated by means of a solid rocket motor toward Earth, so as to achieve atmospheric entry conditions identical with those of a spacecraft returning from GEO. During the atmospheric pass, the angle of attack is kept constant, and the angle of bank is controlled in such a way that the following conditions are satisfied: (a) the atmospheric velocity depletion is such that, after exiting, the AFE spacecraft first ascends to a specified apogee and then descends to a specified perigee; and (b) the exit orbital plane is identical with the entry orbital plane. The final maneuver, not analyzed here, includes the rendezvous with and the capture by the Space Shuttle. In this paper, the trajectories of an AFE spacecraft are analyzed in a 3D space, employing the full system of 6 ODEs describing the atmospheric pass. The atmospheric entry conditions are given, and the atmospheric exit conditions are adjusted in such a way that requirements (a) and (b) are met, while simultaneously minimizing the total characteristic velocity, hence the propellant consumption required for orbital transfer. Two possible transfers are considered: indirect ascent (IA) to a 178 NM perigee via a 197 NM apogee; and direct ascent (DA) to a 178 NM apogee. For both transfers, two cases are investigated: (i) the bank angle is continuously variable; and (ii) the trajectory is divided into segments along which the bank angle is constant. For case (ii), the following subcases are studied; 2, 3, 4 and 5 segments; because the time duration of each segment is optimized, the above subcases involve 4, 6, 8 and 10 parameters, respectively. It is shown that the optimal trajectories of cases (i) and (ii) coalesce into a single trajectory: a two-subarc trajectory, with the bank angle constant in each subarc (bang-bang control). Specifically, the bank angle is near 180° in the atmospheric entry phase (positive lift projection phase) and is near 0° in the atmospheric exit phase (negative lift projection phase). It is also shown that, during the atmospheric pass, the peak values of the changes of the orbital inclination and the longitude of the ascending node are nearly zero; hence, the peak value of the wedge angle (angle between the instantaneous orbital plane and the initial orbital plane) is nearly zero. This means that the motion of the spacecraft is nearly planar in an inertial space.  相似文献   

12.
A. Miele  T. Wang 《Acta Astronautica》1992,26(12):855-866
The aeroassisted flight experiment (AFE) refers to an experimental spacecraft to be launched and then recovered by the Space Shuttle. It simulates a transfer from a geosynchronous Earth orbit (GEO) to a low Earth orbit (LEO). In this paper, with reference to an AFE-type spacecraft, an actual GEO-to-LEO transfer is considered under the following assumptions: the GEO and LEO orbital planes are identical; both the initial and final orbits are circular; the initial phase angle is given, while the final phase angle is free. The aeroassisted orbital transfer trajectory involves three branches: a preatmospheric branch, GEO-to-entry; an atmospheric branch, entry-to-exit; a post-atmospheric branch, exit-to-LEO. The optimal trajectory is determined by minimizing the total characteristic velocity. The optimization is performed with respect to the velocity impulses at GEO, LEO, and the time history of the angle of bank during the atmospheric pass. It is assumed that the entry path inclination is free and that the angle of attack is constant, = 17.0 deg. The sequential gradient-restoration algorithm is used to compute the optimal trajectory and it is shown that the best atmospheric pass is to be performed with constant angle of bank. The resulting optimal trajectory constitutes an ideal nominal trajectory for the generation of guidance trajectories for two reasons: the fact that the low value of the characteristic velocity is accompanied by relatively low values of the peak heating rate and the peak dynamic pressure; and the simplicity of the control distribution, requiring constant angle of bank.  相似文献   

13.
陈洪波  杨涤 《航天控制》2006,24(6):17-22
给出了同平面HEO-LEO实现空间交会的必要条件;研究了基于气动辅助轨道转移技术实现同平面HEO-LEO的空间交会方案,通过设计一条标准的同平面HEO-LEO气动辅助轨道转移的最优轨迹,得到了轨道转移飞行器(OTV)与目标实现交会必须满足的标准相角;最后对大气飞行段设计了非线性最优闭环导引律,通过引入Lyapunov最陡下降函数,对函数中相应参数进行适当调整,使应用闭环导引律得到的大气内飞行轨迹与最优轨迹充分接近,仿真结果表明该气动辅助空间交会方法正确、可行。  相似文献   

14.
This paper considers minimax problems of optimal control arising in the study of aeroassisted orbital transfer. The maneuver considered involves the coplanar transfer from a high planetary orbit to a low planetary orbit. An example is the HEO-to-LEO transfer of a spacecraft, where HEO denotes high Earth orbit and LEO denotes low Earth orbit. In particular, HEO can be GEO, a geosynchronous Earth orbit.The basic idea is to employ the hybrid combination of propulsive maneuvers in space and aerodynamic maneuvers in the sensible atmosphere. Hence, this type of flight is also called synergetic space flight. With reference to the atmospheric part of the maneuver, trajectory control is achieved by means of lift modulation. The presence of upper and lower bounds on the lift coefficient is considered.The following minimax problems of optimal control are investigated: (i) minimize the peak heating rate, problem P1; and (ii) minimize the peak dynamic pressure, problem P2. It is shown that problems P1 and P2 are approximately equivalent to the following minimax problem of optimal control: (iii) minimize the peak altitude drop occurring in the atmospheric portion of the trajectory, problem P3.Problems P1–P3 are Chebyshev problems of optimal control, which can be converted into Bolza problems by suitable transformations. However, the need for these transformations can be bypassed if one reformulates problem P3 as a two-subarc problem of optimal control, in which the first subarc connects the initial point and the point where the path inclination is zero, and the second subarc connects the point where the path inclination is zero and the final point: (iv) minimize the altitude drop achieved at the point of junction between the first subarc and the second subarc, problem P4. Note that problem P4 is a Bolza problem of optimal control.Numerical solutions for problems P1–P4 are obtained by means of the sequential gradient-restoration algorithm for optimal control problems. Numerical examples are presented, and their engineering implications are discussed. In particular, it is shown that, from an engineering point of view, it is desirable to solve problem P3 or P4, rather than problems P1 and P2.  相似文献   

15.
Space radiation is the primary source of hazard for orbital and interplanetary space flight. Radiation levels for different space mission durations, have been established in order to determine the level of hazard. The risk of exceeding the established levels should not be more than 1%. Radiation environment models have been developed to estimate these values. It is possible to build spacecraft shielding based on the calculation of doses and the risk of exceeding these. By reviewing various calculated estimates of the risk, the radiation hazard and the efficiency of protective measures can be established for specific flights.  相似文献   

16.
《Acta Astronautica》1999,44(5-6):219-225
The spacecraft flights to the Near-Earth asteroid in order to give an impact influence on the asteroid, correct its orbit and prevent the asteroid’s collision with the Earth are analyzed.In the first part, the impulse flights are analyzed in the Lambert approach. There are determined the optimal trajectories maximizing the asteroid deviation from the Earth.In the second part, the flights with the chemical and electric-jet engines are analyzed. The high thrust is used to launch the spacecraft from the geocentric orbit, and the low thrust is applied for the heliocentric motion. On the base of optimal impulse transfer, the optimal low thrust trajectories are determined using Pontryagin maximum principle.The numerical results are given for the flight to the asteroid Toutatis. Parameters of the spacecraft impact on the asteroid are determined. The asteroid deviation from the Earth caused by the spacecraft influence is presented.  相似文献   

17.
Reduction of flight duration after insertion till docking to the ISS is considered. In the beginning of the human flight era both the USSR and the USA used short mission profiles due to limited life support resources. A rendezvous during these missions was usually achieved in 1–5 revolutions. The short-term rendezvous were made possible by the coordinated launch profiles of both rendezvousing spacecraft, which provided specific relative position of the spacecraft or phase angle conditions. After the beginning of regular flights to the orbital stations these requirements became difficult to fulfill. That is why it was decided to transfer to 1- or 2-day rendezvous profile. The long stay of a crew in a limited habitation volume of the Soyuz-TMA spacecraft before docking to the ISS is one of the most strained parts of the flight and naturally cosmonauts wish to dock to the ISS as soon as possible. As a result of previous studies the short four-burn rendezvous mission profile with docking in a few orbits was developed. It is shown that the current capabilities of the Soyuz-FG launch vehicle and the Soyuz-TMA spacecraft are sufficient to provide for that. The first test of the short rendezvous mission during Progress cargo vehicle flight to the ISS is planned for 2012. Possible contingencies pertinent to this profile are described. In particular, in the majority of the emergency cases there is a possibility of an urgent transfer to the present 2-day rendezvous profile. Thus, the short mission will be very flexible and will not influence the ISS mission plan. Fuel consumption for the nominal and emergency cases is defined by statistical simulation of the rendezvous mission. The qualitative analysis of the short-term and current 2-day rendezvous missions is performed.  相似文献   

18.
小推力轨道保持方法   总被引:1,自引:1,他引:0  
吕秋杰  孟占峰  韩潮 《上海航天》2010,27(4):23-28,42
对小推力轨道保持方法进行了研究。用快、慢变量控制器分别控制轨道要素的快慢变量,基于推导的经典轨道要素与2个推力方向角和最佳变轨位置的关系,给出了最优推力方向角的解析表达式。用Lyapunov反馈控制实现卫星轨道机动的轨道转移,并引入相位调整,实现了卫星的站位保持。仿真结果表明:基于Lyapunov的反馈控制可实现小推力轨道的转移和保持。  相似文献   

19.
为确保载人飞行器在长期飞行中的设备安全以及短期飞行中航天员的安全,需要从系统层面进行自主安全设计,使航天器在出现地面无法快速反应的故障时能够启动安全模式进行自我保护。文章以能源安全设计为主对“天宫一号”目标飞行器系统级自主安全设计进行了论述,总结了设计经验,对后续型号的设计提出了建议。  相似文献   

20.
In recent years, great experience has been accumulated in manned flight astronautics for rendezvous in near-Earth orbit. During flights of Apollo spacecraft with crews that landed on the surface of the Moon, the problem of docking a landing module launched from the Moon’s surface with the Apollo spacecraft’s command module in a circumlunar orbit was successfully solved. A return to the Moon declared by leading space agencies requires a scheme for rendezvous of a spacecraft launched from an earth-based cosmodromee with a lunar orbital station. This paper considers some ballistic schemes making it possible to solve this problem with minimum fuel expenditures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号