首页 | 本学科首页   官方微博 | 高级检索  
     检索      


General solution for the optimal trajectory of an AFE-type spacecraft
Authors:A Miele and T Wang
Institution:

Aero-Astronautics Group, Rice University, Houston, TX 77251-1892, U.S.A.

Abstract:The aeroassisted flight experiment (AFE) refers to an experimental spacecraft to be launched and then recovered by the Space Shuttle. It simulates a transfer from a geosynchronous Earth orbit (GEO) to a low Earth orbit (LEO). In this paper, with reference to an AFE-type spacecraft, an actual GEO-to-LEO transfer is considered under the following assumptions: the GEO and LEO orbital planes are identical; both the initial and final orbits are circular; the initial phase angle is given, while the final phase angle is free. The aeroassisted orbital transfer trajectory involves three branches: a preatmospheric branch, GEO-to-entry; an atmospheric branch, entry-to-exit; a post-atmospheric branch, exit-to-LEO. The optimal trajectory is determined by minimizing the total characteristic velocity. The optimization is performed with respect to the velocity impulses at GEO, LEO, and the time history of the angle of bank during the atmospheric pass. It is assumed that the entry path inclination is free and that the angle of attack is constant, greek small letter alpha = 17.0 deg. The sequential gradient-restoration algorithm is used to compute the optimal trajectory and it is shown that the best atmospheric pass is to be performed with constant angle of bank. The resulting optimal trajectory constitutes an ideal nominal trajectory for the generation of guidance trajectories for two reasons: the fact that the low value of the characteristic velocity is accompanied by relatively low values of the peak heating rate and the peak dynamic pressure; and the simplicity of the control distribution, requiring constant angle of bank.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号