首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《中国航空学报》2016,(3):789-798
This paper presents an integrated fuzzy controller design approach to synchronize a dis-similar redundant actuation system of a hydraulic actuator (HA) and an electro-hydrostatic actu-ator (EHA) with system uncertainties and disturbances. The motion synchronous control system consists of a trajectory generator, an individual position controller for each actuator, and a fuzzy force tracking controller (FFTC) for both actuators. The trajectory generator provides the desired motion dynamics and designing parameters of the trajectory which are taken according to the dynamic characteristics of the EHA. The position controller consists of a feed-forward controller and a fuzzy position tracking controller (FPTC) and acts as a decoupled controller, improving posi-tion tracking performance with the help of the feed-forward controller and the FPTC. The FFTC acts as a coupled controller and takes into account the inherent coupling effect. The simulation results show that the proposed controller not only eliminates initial force fighting by synchronizing the two actuators, but also improves disturbance rejection performance.  相似文献   

2.
Nonlinear Adaptive Robust Force Control of Hydraulic Load Simulator   总被引:2,自引:2,他引:0  
This paper deals with the high performance force control of hydraulic load simulator. Many previous works for hydraulic force control are based on their linearization equations, but hydraulic inherent nonlinear properties and uncertainties make the conventional feedback proportional-integral-derivative control not yield to high-performance requirements. In this paper, a nonlinear system model is derived and linear parameterization is made for adaptive control. Then a discontinuous projection-based nonlinear adaptive robust force controller is developed for hydraulic load simulator. The proposed controller constructs an asymptotically stable adaptive controller and adaptation laws, which can compensate for the system nonlinearities and uncertain parameters. Meanwhile a well-designed robust controller is also developed to cope with the hydraulic system uncertain nonlinearities. The controller achieves a guaranteed transient performance and final tracking accuracy in the presence of both parametric uncertainties and uncertain nonlinearities; in the absence of uncertain nonlinearities, the scheme also achieves asymptotic tracking performance. Simulation and experiment comparative results are obtained to verify the high-performance nature of the proposed control strategy and the tracking accuracy is greatly improved.  相似文献   

3.
Low-velocity tracking capability is a key performance of flight motion simulator (FMS), which is mainly affected by the nonlinear friction force. Though many compensation schemes with ad hoc friction models have been proposed, this paper deals with low-velocity control without friction model, since it is easy to be implemented in practice. Firstly, a nonlinear model of the FMS middle frame, which is driven by a hydraulic rotary actuator, is built. Noting that in the low velocity region, the unmodeled friction force is mainly characterized by a changing-slowly part, thus a simple adaptive law can be employed to learn this changing-slowly part and compensate it. To guarantee the boundedness of adaptation process, a discontinuous projection is utilized and then a robust scheme is proposed. The controller achieves a prescribed output tracking transient performance and final tracking accuracy in general while obtaining asymptotic output tracking in the absence of modeling errors. In addition, a saturated projection adaptive scheme is proposed to improve the globally learning capability when the velocity becomes large, which might make the previous proposed projection-based adaptive law be unstable. Theoretical and extensive experimental results are obtained to verify the high-performance nature of the proposed adaptive robust control strategy.  相似文献   

4.
基于自适应模糊系统的空天飞行器非线性预测控制   总被引:1,自引:0,他引:1  
方炜  姜长生 《航空学报》2008,29(4):988-994
 针对一类多输入多输出非线性不确定系统,提出了基于自适应模糊系统的非线性预测控制方法。控制器由基于模糊系统的非线性预测控制器和鲁棒自适应控制器两个部分组成。根据系统的跟踪误差在线调整模糊系统的权值,使得模糊系统一致逼近被控对象中的非线性函数,通过泰勒展开设计出基于模糊系统的非线性预测控制律,避免了预测控制在线优化带来的繁重的计算负担。鲁棒自适应控制器则用于减少不确定和模糊逼近误差对系统的影响。所设计的控制器保证了闭环系统的最终一致有界稳定。基于Lyapunov稳定原理,给出了理论证明和分析。最后利用提出的控制方案设计了空天飞行器高超声速飞行姿态的控制系统,仿真结果表明了控制方案的有效性。  相似文献   

5.
研究了单输入单输出非线性不确定系统的鲁棒输出跟踪控制。在标称系统可输入/输出线性化、不确定性项有界且满足广义匹配条件的情况下,可得到系统的高增益鲁棒输出跟踪控制器。鲁棒控制器仅依赖于设计参数和不确定性的界。将该方法应用于飞机纵向高阶非线性动态的控制器设计,并进行了数字仿真。结果表明了该方法的有效性。  相似文献   

6.
《中国航空学报》2021,34(5):253-264
Pump controlled hydraulic actuators are wildly used in the aerospace industry owing to the advantages of energy-saving and integrated configurations. Negative loads may occur to actuators due to external force loads or the inertial force when the actuator decelerates significantly. Uncertain negative load working conditions may cause cavitation, actuator vibration, and even instability to the motion control if the actuator is without sufficient meter-out damping. Various types of hydraulic configuration schemes have been proposed to deal with negative loads of hydraulic actuators. However, few of them can simultaneously achieve energy saving and high control accuracy. This study proposes an energy-saving and accurate motion tracking strategy for a hydraulic actuator with uncertain negative loads. The actuator’s motion is driven by a servomotor pump, which gives full play to the advantage of energy-saving. The meter-out pressure is controlled by proportional valves to provide the optimized meter-out damping. The nonlinear adaptive robust control law is designed, which guarantees the control stability and achieve high tracking accuracy. An integrated direct/indirect adaptation law obtains satisfactory parameter estimations and model compensation for asymptotic motion tracking. Comparative experiments under different working conditions were performed to validate the advantages of the proposed control strategy.  相似文献   

7.
Liu Zhi  Wang Yong 《中国航空学报》2014,27(5):1273-1287
Motivated by the autopilot of an unmanned aerial vehicle(UAV) with a wide flight envelope span experiencing large parametric variations in the presence of uncertainties, a fuzzy adaptive tracking controller(FATC) is proposed. The controller consists of a fuzzy baseline controller and an adaptive increment, and the main highlight is that the fuzzy baseline controller and adaptation laws are both based on the fuzzy multiple Lyapunov function approach, which helps to reduce the conservatism for the large envelope and guarantees satisfactory tracking performances with strong robustness simultaneously within the whole envelope. The constraint condition of the fuzzy baseline controller is provided in the form of linear matrix inequality(LMI), and it specifies the satisfactory tracking performances in the absence of uncertainties. The adaptive increment ensures the uniformly ultimately bounded(UUB) predication errors to recover satisfactory responses in the presence of uncertainties. Simulation results show that the proposed controller helps to achieve high-accuracy tracking of airspeed and altitude desirable commands with strong robustness to uncertainties throughout the entire flight envelope.  相似文献   

8.
High dynamic tracking performance is a key technical index of hydraulic flight motion simulator(HFMS). However, the strong nonlinearities, various model uncertainties and measurement noise in hydraulic actuation systems limit the high dynamic performance improvement. In this paper, the outer axis frame of a HFMS is taken as a case study and its nonlinear dynamic model with consideration of strong nonlinearities, matched and mismatched uncertainties is established.A novel cascaded extended state ...  相似文献   

9.
陀螺稳定平台视轴稳定系统自适应模糊PID控制   总被引:2,自引:0,他引:2  
姬伟  李奇 《航空学报》2007,28(1):191-195
 在运动载体上的光电跟踪系统中,需要采用建立在陀螺稳定平台上的视轴稳定控制。分析了平台结构和惯性稳定隔离原理。针对系统机械谐振、力矩耦合及电气参数波动等非线性不确定因素的影响,设计了复合自适应模糊PID控制器。引入自适应调整因子进行控制规则和参数的在线修正,采用复合控制克服模糊控制固有的盲区,实现无差调节。在光电跟踪转台上的实验结果显示该方法能够有效地隔离载体扰动,减小扰动造成的误差,保证视轴对目标的准确瞄准,具有快速的动态响应和较强的抗干扰性。  相似文献   

10.
An adaptive robust attitude tracking control law based on switched nonlinear systems is presented for a variable structure near space vehicle (VSNSV) in the presence of uncertainties and disturbances. The adaptive fuzzy systems are employed for approximating unknown functions in the flight dynamic model and their parameters are updated online. To improve the flight robust performance, robust controllers with adaptive gains are designed to compensate for the approximation errors and thus they have less design conservation. Moreover, a systematic procedure is developed for the synthesis of adaptive fuzzy dynamic surface control (DSC) approach. According to the common Lyapunov function theory, it is proved that all signals of the closed-loop system are uniformly ultimately bounded by the continuous controller. The simulation results demonstrate the effectiveness and robustness of the proposed control scheme.  相似文献   

11.
Electromechanical flight actuators for advanced flight vehicles   总被引:3,自引:0,他引:3  
The aircraft flight quantities and success of the mission depend to a great extent upon the actuator performance, and flight actuators must be designed to achieve the specified criteria. Electromechanical flight actuators driven by electric motors have begun to displace hydraulic technology in advanced flight vehicles. In aerospace application, permanent-magnet stepper motors are perfectly suited due to their efficiency and reliability, low volume-, weight-, and size-to-torque ratios, high power and torque densities, low cost and maintenance, simplicity and ruggedness, etc. Conventional open-loop stepper motor servos do not ensure the required accuracy and dynamic performance. An innovative method in motion control of advanced electromechanical flight actuators is developed, and nonlinear controllers are designed. The specified tracking accuracy, desired stability margins, microstepping capabilities, and disturbance attenuation are ensured by the robust nonlinear controllers synthesized. Analytical, numerical, and experimental results are documented to study the performance of flight actuators directly driven by stepper motors and to demonstrate the efficiency of control algorithms  相似文献   

12.
《中国航空学报》2021,34(3):164-175
In this paper, a robust adaptive controller is designed for a guided spinning rocket, whose dynamics presents the characteristics of pitch-yaw cross coupling, fast time-varying aerodynamics parameters and wide flight envelop. First, a coupled nonlinear six-degree-of-freedom equation of motion for a guided spinning rocket is developed, and the lateral acceleration motion is modeled as a control plant with time-varying matched uncertainties and unmodeled dynamics. Then, a robust adaptive control method is proposed by combining Bregman divergence and variational method to achieve fast adaption and maintain bounded tracking. The stability of the resulting closed-loop system is proved, and the ultimate bound and convergence rate are also analyzed. Finally, numerical simulations are performed for a single operating point and the whole flight trajectory to show the robustness and adaptability of the proposed method with respect to time-varying uncertainties and unmodeled dynamics.  相似文献   

13.
A robust adaptive control scheme is proposed that can be applied to a practical autopilot design for feedback-linearized skid-to-turn (STT) missiles with aerodynamic uncertainties. The approach is to add a robust adaptive controller to a feedback-linearizing controller in order to reduce the influence of the aerodynamic uncertainties. The proposed robust adaptive control scheme is based on a sliding mode control technique with an adaptive law for estimating the unknown upper bounds of uncertain parameters. A feature of the proposed scheme is that missile systems with aerodynamic uncertainties can be controlled effectively over a wide operating range of flight conditions. It is shown, using Lyapunov stability theory, that the proposed scheme can give sufficient tracking capability and stability for a feedback-linearized STT missile with aerodynamic uncertainties. The six-degree-of-freedom nonlinear simulation results also show that good performance for several uncertainty models and engagement scenarios can be achieved by the proposed scheme in practical night conditions  相似文献   

14.
使用变速控制力矩陀螺的航天器鲁棒自适应姿态跟踪控制   总被引:4,自引:1,他引:3  
刘军  韩潮 《航空学报》2008,29(1):159-164
 研究以变速控制力矩陀螺群(VSCMGs)为执行机构的航天器姿态跟踪问题。采用四元数描述姿态, 在姿态误差的描述中引入了现时姿态与期望姿态之间的方向余弦矩阵。考虑执行机构模型参数不确定和有外干扰的情况, 姿态误差动力学方程为多输入多输出(MIMO)的非线性系统。基于Lyapunov理论设计了鲁棒自适应控制器, 运用光滑投影算法避免了估计参数陷入奇异。仿真结果表明, 设计的鲁棒自适应控制律明显地缩小了姿态跟踪误差, 很好地解决了外部环境干扰和执行机构由于安装误差或机械磨损造成的轴承方向未对准的问题。  相似文献   

15.
Adaptive Sliding Control of Six-DOF Flight Simulator Motion Platform   总被引:6,自引:0,他引:6  
本文使用Newton-Euler法推导了六自由度飞行模拟器运动平台完整的线性化形式的动力学方程,并以此为基础,提出了一种在任务空间中的非线性自适应滑模控制方法。这种控制方法将系统中的不确定性分为定常不确定参数和时变不确定参数,利用非线性自适应控制对定常不确定参数进行辨识,同时结合滑模控制对时变不确定参数和外部扰动进行补偿。通过数值仿真分析表明,该控制策略能准确识别运动平台的载荷、惯量、重心等参数,同时又能有效地提高系统的鲁棒性能。  相似文献   

16.
In this paper, a methodology has been developed to address the issue of force fighting and to achieve precise position tracking of control surface driven by two dissimilar actuators. The nonlinear dynamics of both actuators are first approximated as fractional order models. Based on the identified models, three fractional order controllers are proposed for the whole system. Two Fractional Order PID (FOPID) controllers are dedicated to improving transient response and are designed in a position feedback configuration. In order to synchronize the actuator dynamics, a third fractional order PI controller is designed, which feeds the force compensation signal in position feedback loop of both actuators. Nelder-Mead (N-M) optimization technique is employed in order to optimally tune controller parameters based on the proposed performance criteria. To test the proposed controllers according to real flight condition, an external disturbance of higher amplitude that acts as airload is applied directly on the control surface. In addition, a disturbance signal function of system states is applied to check the robustness of proposed controller. Simulation results on nonlinear system model validated the performance of the proposed scheme as compared to optimal PID and high gain PID controllers.  相似文献   

17.
邵书义  陈谋  招启军 《航空学报》2020,41(z2):724283-724283
为了飞行控制方案便于在计算机上实现,针对具有外部干扰和执行器加性故障的四旋翼无人机(UAV)角度运动方程,给出一种基于干扰观测器的离散时间跟踪控制方案。通过设计离散时间干扰观测器抑制外部干扰和执行器故障的不利影响,并结合干扰观测器设计离散时间控制器。通过数值仿真验证了基于干扰观测器的离散时间容错控制方案的有效性。仿真结果表明,设计的离散控制器能够保证外部干扰和执行器故障综合作用下的四旋翼UAV系统跟踪控制性能。  相似文献   

18.
卫星姿态跟踪系统的鲁棒控制器设计   总被引:5,自引:0,他引:5  
研究了具有参数不确定性和外部干扰的卫星姿态跟踪控制问题。针对这一类多输入/多输出不确定非线性系统,提出了一个基于不确定项上界的鲁棒输出跟踪控制器设计方法。应用输入/输出反馈线性化法和李亚普诺夫方法,设计了一个控制律,它可确保系统输出按指数规律跟踪期望输出。该控制器计算简单,易于实现。仿真结果表明:即使系统存在不确定性,仍可在闭环系统中实现精确的姿态控制。  相似文献   

19.
The problem of controller design for flexible spacecraft is addressed. Model-based compensators, which rely on the knowledge of the system parameters to tune the state estimator, are first considered, and are shown to have high sensitivity to parameter uncertainties. Three types of dissipative controllers, which use collocated actuators and sensors, are next considered. These controllers guarantee stability in the presence of unmodeled elastic modes and parameter uncertainties. A procedure is given for designing an optimal dissipative dynamic compensator, which can provide better performance while still retaining robust stability  相似文献   

20.
基于小波神经网络的自适应飞/推控制系统设计   总被引:1,自引:1,他引:0  
基于小波神经网络提出了一种H∞自适应控制方法。控制器由等效控制器和H∞控制器两部分组成。用小波神经网络逼近非线性函数,并把逼近误差引入到权值的自适应律中用以改善系统的动态性能。H∞控制器用于减弱外部及神经网络的逼近误差对跟踪的影响。所设计的控制器不仅保证了闭环系统的稳定性,而且使外部干扰及神经网络的逼近误差对跟踪的影响减小到给定的性能指标。最后基于所设计的控制方法对新一代歼击机设计了飞/推控制系统,并对飞机作大迎角机动仿真。仿真结果表明所设计的飞/推控制系统是有效的,同时验证了所设计的非线性控制方法是有效性的。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号