首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 40 毫秒
1.
To comprehensively consider the effects of strength degeneration and failure correlation, an improved stress-strength interference (SSI) model is proposed to analyze the reliability of aeroengine blades with the fatigue failure mode. Two types of TC4 alloy experiments are conducted for the study on the damage accumulation law. All the parameters in the nonlinear damage model are obtained by the tension-compression fatigue tests, and the accuracy of the nonlinear damage model is verified by the damage tests. The strength degeneration model is put forward on the basis of the Chaboche nonlinear damage theory and the Griffith fracture criterion, and determined by measuring the fatigue toughness during the tests. From the comparison of two kinds of degeneration models based on the Miner’s linear law and the nonlinear damage model respectively, the nonlinear model has a significant advantage on prediction accuracy especially in the later period of life. A time-dependent SSI reliability model is established. By computing the stress distribution using the finite element (FE) technique, the reliability of a single blade during the whole service life is obtained. Considering the failure correlation of components, a modified reliability model of aero-engine blades with common cause failure (CCF) is presented. It shows a closer and more reasonable process with the actual working condition. The improved reliability model is illustrated to be applied to aero-engine blades well, and the approach purposed in this paper is suitable for any actual machinery component of aero-engine rotor systems.  相似文献   

2.
In this paper, a new method is developed to model dependent failure behavior among failure mechanisms. Unlike the existing methods, the developed method models the root cause of the dependency explicitly, so that a deterministic model, rather than a probabilistic one, can be established. Three steps comprise the developed method. First, physics-of-failure(PoF) models are utilized to model each failure mechanism. Then, interactions among failure mechanisms are modeled as a combination of three basic relations, competition, superposition and coupling. This is the reason why the method is referred to as ‘‘compositional method". Finally, the PoF models and the interaction model are combined to develop a deterministic model of the dependent failure behavior. As a demonstration, the method is applied on an actual spool and the developed failure behavior model is validated by a wear test. The result demonstrates that the compositional method is an effective way to model dependent failure behavior.  相似文献   

3.
Particle filtering (PF) is being applied successfully in nonlinear and/or non-Gaussian system failure prognosis. However, for failure prediction of many complex systems whose dynamic state evolution models involve time-varying parameters, the traditional PF-based prognosis framework will probably generate serious deviations in results since it implements prediction through iterative calculation using the state models. To address the problem, this paper develops a novel integrated PF-LSSVR framework based on PF and least squares support vector regression (LSSVR) for nonlinear system failure prognosis. This approach employs LSSVR for long-term observation series prediction and applies PF-based dual estimation to collaboratively estimate the values of system states and parameters of the corresponding future time instances. Meantime, the propagation of prediction uncertainty is emphatically taken into account. Therefore, PF-LSSVR avoids over-dependency on system state models in prediction phase. With a two-sided failure definition, the probability distribution of system remaining useful life (RUL) is accessed and the corresponding methods of calculating performance evaluation metrics are put forward. The PF-LSSVR framework is applied to a three-vessel water tank system failure prognosis and it has much higher prediction accuracy and confidence level than traditional PF-based framework.  相似文献   

4.
Prognostics and health management (PHM) significantly improves system availability and reliability, and reduces the cost of system operations. Design for testability (DFT) developed concurrently with system design is an important way to improve PHM capability. Testability modeling and analysis are the foundation of DFT. This paper proposes a novel approach of testability modeling and analysis based on failure evolution mechanisms. At the component level, the fault progression-related information of each unit under test (UUT) in a system is obtained by means of failure modes, evolution mechanisms, effects and criticality analysis (FMEMECA), and then the failure-symptom dependency can be generated. At the system level, the dynamic attributes of UUTs are assigned by using the bond graph methodology, and then the symptom-test dependency can be obtained by means of the functional flow method. Based on the failure-symptom and symptom-test dependencies, testability analysis for PHM systems can be realized. A shunt motor is used to verify the application of the approach proposed in this paper. Experimental results show that this approach is able to be applied to testability modeling and analysis for PHM systems very well, and the analysis results can provide a guide for engineers to design for testability in order to improve PHM performance.  相似文献   

5.
Real-time performance and reliability are two most important issues in applications of time-triggered controller area network (CAN) bus systems at present. A scheduling matrix of time-triggered CAN-bus system is established using average-loading algorithm. Periodic messages are guaranteed to transmit without delay by distributing independent transmission windows within the system matrix. Considering the traditional CAN-bus transmission mechanism and the time-triggered feature, an algorithm is improved to calculate the worst-case delay of event-triggered messages in time-triggered CAN-bus systems. The failure probability is calculated for event-triggered messages whose worst-case delay exceeds their deadlines. Different levels of redundant structures of CAN-bus circuits are analyzed and the maintenance management is proposed to improve the system reliability. Finally, the reliabilities of different structures are calculated and the influences of maintenance on the system reliability are analyzed.  相似文献   

6.
Considering that the uncertain information has serious influences on the safety of structural systems and is always limited, it is reasonable that the uncertainties are generally described as interval sets. Based on the non-probabilistic set-theoretic theory, which is applied to measuring the safety of structural components and further combined with the branch-and-bound method for the probabilistic reliability analysis of structural systems, the non-probabilistic branch-and-bound method for determining the dominant failure modes of an uncertain structural system is given. Meanwhile, a new system safety measuring index obtained by the non-probabilistic set-theoretic model is investigated. Moreover, the compatibility between the classical probabilistic model as well as the proposed interval-set model will be discussed to verify the physical meaning of the safety measure in this paper. Some numerical examples are utilized to illustrate the validity and feasibility of the developed method.  相似文献   

7.
Tolerance design plays an important role in reliability design for electronic circuits. The traditional method only focuses on the consistency of output response. It is not able to meet the needs of increasing development of electronic products. This paper researches the state of related fields and proposes a method of multi-objective reliability tolerance design. The characteristics of output response and operating stresses on critical components are both defined as design objectives. Critical components and their operating stresses are determined by failure mode and effect analysis (FMEA) and fault tree analysis (FTA). Sensitivity analysis is carried out to determine sensitive parameters that affect the design objectives significantly. Monte Carlo and worst-case analysis are utilized to explore the tolerance levels of sensitive parameters. Design of experiment and regression analysis are applied in this method. The optimal tolerance levels are selected in accord with a quality-cost model to improve consistency of output response and reduce failure rates of critical components synchronously. The application in light-emitting diode (LED) drivers indicates details and potential. It shows that the proposed method provides a more effective way to improve performance and reliability of electronic circuits.  相似文献   

8.
《中国航空学报》2016,(3):662-674
Dynamic time-varying operational conditions pose great challenge to the estimation of system remaining useful life (RUL) for the deteriorating systems. This paper presents a method based on probabilistic and stochastic approaches to estimate system RUL for periodically moni-tored degradation processes with dynamic time-varying operational conditions and condition-specific failure zones. The method assumes that the degradation rate is influenced by specific oper-ational condition and moreover, the transition between different operational conditions plays the most important role in affecting the degradation process. These operational conditions are assumed to evolve as a discrete-time Markov chain (DTMC). The failure thresholds are also determined by specific operational conditions and described as different failure zones. The 2008 PHM Conference Challenge Data is utilized to illustrate our method, which contains mass sensory signals related to the degradation process of a commercial turbofan engine. The RUL estimation method using the sensor measurements of a single sensor was first developed, and then multiple vital sensors were selected through a particular optimization procedure in order to increase the prediction accuracy. The effectiveness and advantages of the proposed method are presented in a comparison with exist-ing methods for the same dataset.  相似文献   

9.
Prognostics and health management (PHM) is very important to guarantee the reliability and safety of aerospace systems, and sensing and test are the precondition of PHM. Integrating design for testability into early design stage of system early design stage is deemed as a fundamental way to improve PHM performance, and testability model is the base of testability analysis and design. This paper discusses a hierarchical model-based approach to testability modeling and analysis for heading attitude system health management. Quantified directed graph, of which the nodes represent components and tests and the directed edges represent fault propagation paths, is used to describe fault-test dependency, and quantitative testability information is assigned to nodes and directed edges. The fault dependencies between nodes can be obtained by functional fault analysis methodology that captures the physical architecture and material flows such as energy, heat, data, and so on. By incorporating physics of failure models into component, the dynamic process of a failing or degrading component can be projected onto system behavior, i.e., system symptoms. Then, the analysis of extended failure modes, mechanisms and effects is utilized to construct fault evolution-test dependency. Using this integrated model, the designers and system analysts can assess the test suite’s fault detectability, fault isolability and fault predictability. And heading attitude system application results show that the proposed model can support testability analysis and design for PHM very well.  相似文献   

10.
The theory of economic life prediction and reliability assessment of aircraft structures has a significant effect on safety of air-craft structures.It is based on the two-stage theory of fatigue process and can guarantee the safety and reliability of structures.According to the fatigue damage process,the fatigue scatter factors of crack initiation stage and crack propagation stage are given respectively.At the same time,mathematical models of fatigue life prediction are presented by utilizing the fatigue scatter factors and full scale test results of aircraft structures.Furthermore,the economic life model is put forward.The model is of sig-nificant scientific value for products to provide longer economic life,higher reliability and lower cost.The theory of economic life prediction and reliability assessment of aircraft structures has been successfully applied to determining and extending the structural life for thousands of airplanes.  相似文献   

11.
目前,有关航空维修中出现的高故障率现场可更换单元(LRU)的可靠性评估和LRU 故障组件定位等方面的研究仍鲜有报道,为此设计一种适用于LRU“更换维修暠策略的可靠性评估仿真模型,详细介绍模型中各个功能模块的设计原理和实现方法、步骤,并以某型军用飞机液压系统中常见的高故障率LRU 为例,对模型进行应用分析。结果表明:该仿真模型在LRU 可靠性评估中具有可行性和普遍适用性。  相似文献   

12.
If impending failures in aerospace systems can be predicted deterministically during a test or checkout period, action can be taken to replace or repair the defective parts and a mission failure averted. This has the effect of increasing the mission reliability of the system. There are several methods of predicting specific failures especially adapted to electronic systems, but also applicable to electromechanical and fluid systems and components. These are classified and discussed in detail, with examples. References are cited for additional detail. By way of background, deterministic failure prediction is contrasted with statistical failure prediction. The nature and definition of failure and related concepts are also discussed, together with the physical principles upon which the several failure prediction methods are based. Used selectively and collectively, these failure prediction methods can form an optimal failure prevention strategy for use in a system test or checkout program.  相似文献   

13.
固体火箭发动机可靠性设计系统的研究与实现   总被引:2,自引:0,他引:2  
可靠性设计是固体火箭发动机设计中的一项重要工作,但长期以来这些工作主要依靠多个设计人员共同完成。为了实现固体火箭发动机可靠性设计自动化,本文首先结合固体火箭发动机可靠性设计的工程实际,提出了软件系统的主要功能,然后在总结工程实践中常用的可靠性分配、预计、评估等方法的基础上,确定了系统各模块的计算模型,最后采用C++Builder等软件开发工具,开发了固体火箭发动机可靠性设计系统。实践表明,该系统易于操作,便于工程应用。  相似文献   

14.
基于贝叶斯网络的分层系统可靠性分析   总被引:1,自引:0,他引:1  
刘钰  韩峰  闫凯  陆希成 《航空动力学报》2016,31(6):1385-1392
由于分层系统的系统结构复杂,且系统不同层次可靠性信息具有不均衡性的特点,使得分层系统的可靠性建模较为困难.考虑二态情况,通过引入贝叶斯网络描述分层系统元素间的失效关系,并考虑了系统元素间级联失效问题,结合贝叶斯多源信息融合方法,以贝叶斯网络模型为基础整合了系统各层元素的可靠性信息,构成了一种较为通用的二态分层系统可靠性分析方法.算例结果表明:该方法在贝叶斯网络模型计算过程中能够融合系统各层元素可靠性信息并有效处理级联失效问题,提高了系统可靠性后验均值估计的准确性,减小了系统可靠性结论的后验方差.   相似文献   

15.
《中国航空学报》2022,35(10):195-207
Phased-Mission Systems (PMS) are widely applied in aerospace, telecommunication and intelligent systems for multiple, consecutive and non-overlapping phases of missions. The phase-dependent stresses and system structure cause some difficulties to the reliability analysis of PMSs. In this paper, we analyze the physical isolation effects on the degradation speeds and across-phase damage accumulations of failure mechanisms. And, some corresponding reliability and unreliability formulas are derived. Besides, a hierarchical Binary Decision Diagram (BDD)-based modeling method is proposed for incorporating functional and physical isolation effects into BDD models, and the analytical method with phase algebras is introduced for studying the failure behavior of PMS with functional dependence. In the case study, we evaluate the collision avoidance system of a fixed-wing unmanned aerial vehicle as an example to demonstrate the proposed modeling and analysis method. Results show that the physical isolation effects have significant influences on the degradations of components, which deserves detailed analysis for a more practical and realistic PMS’s failure behavior.  相似文献   

16.
《中国航空学报》2020,33(12):3437-3446
Fault tolerance designs are essential techniques for systems that require high levels of reliability, such as aircraft or spacecraft control system. Imperfect Fault Coverage (IFC) may lead to the failure of a system or subsystem even with adequate redundancy. Previous studies of IFC mostly concentrated on evaluating Coverage Factor (CF), whereas the system failure behaviors with IFC have rarely been involved. Failures that occur in low-layer may be covered by high-layer. However, if the coverage is imperfect, uncovered failure will have functional and physical impact on the system behavior. In this thesis, the failure behavior and reliability of IFC of multi-layer systems are studied and a Binary Decision Diagram (BDD)-based modeling and simulation method are proposed to evaluate system reliability. As a case, the failure behavior of an aero engine electronic controller with IFC is studied. The results show that the IFC may impact system behavior without taking the IFC into account, the system maintenance intervals may reduce, and thus the maintenance costs will increase.  相似文献   

17.
为了更加科学有效地评估纤维缠绕复合材料结构的可靠性,根据复合材料渐进失效特点,应用结构系统可靠性理论和方法,将复合材料视为连续体的结构系统,基于复合材料有限元模型对"单元"和"系统"进行了定义,构建了概率渐进失效分析的基本流程,提出了主要失效序列和结构整体的失效概率的精确解算式和近似计算方法.为解决复杂结构系统主要失效...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号