首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72篇
  免费   9篇
  国内免费   3篇
航空   17篇
航天技术   50篇
综合类   2篇
航天   15篇
  2023年   1篇
  2022年   2篇
  2021年   5篇
  2020年   4篇
  2018年   3篇
  2017年   1篇
  2015年   2篇
  2014年   6篇
  2013年   5篇
  2012年   7篇
  2011年   6篇
  2010年   8篇
  2009年   6篇
  2008年   6篇
  2007年   3篇
  2006年   3篇
  2005年   3篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1998年   1篇
  1997年   2篇
  1995年   1篇
  1994年   1篇
排序方式: 共有84条查询结果,搜索用时 390 毫秒
1.
李洪波  肖业伦 《宇航学报》2006,27(5):956-960
传统的再入飞行器质心运动方程用经度和纬度描述地理位置,在南北极极点处奇异,在南北极区病态。本文提出利用位置矢量的三个方向余弦,称为“三余弦数”或“三元数”,代替经纬度,推导出无奇异再入质心运动方程。再入飞行器临近极点和到达极点的算例显示,使用三元数的无奇异再入方程完全避免了传统方程有关极点的奇异性。同时,无奇异方程所选状态变量与传统方程可进行很简便的转换。  相似文献   
2.
FY—1C极轨气象卫星的进展   总被引:3,自引:1,他引:3  
孟执中 《上海航天》2001,18(2):1-7,23
在概述美国和俄罗斯等国外极轨气象卫星发展概况的基础上,介绍了中国极轨与静止轨道两种气象卫星的业务应用卫星体系,重点介绍了“风云一号”(02星)即FY-1C极轨气象卫星的任务、总体设计、技术特点、关键技术以及所取得的进展。最后简述了新一代有轨气象卫星FY-3的发展设想。  相似文献   
3.
详细阐述了解析方位双轴惯导平台式重力测量的工作原理,并通过基于方位余弦积的惯导力学编排解决了极区工作问题。在常规平台式重力测量数据处理方法的基础上,针对高动态环境提出了基于Kalman滤波的运动扰动修正方法。在此基础上研制了ZL11-1A型国产惯导平台式海洋重力仪。通过与国外主流重力仪产品海上同船作业比对,结果表明,该型重力仪在高海况下测量精度依然优于1mGal,满足重力测量作业要求。  相似文献   
4.
A modification of the Doppler Interferometry Technique is suggested to enable estimating angles of arrival of comparatively broadband HF signals scattered by random irregularities of the ionospheric plasma with the use of small-size weakly directional antennas. The technique is based on the measurements of cross-spectra phases of the probe radiation recorded at least in three spatially separated points. The developed algorithm has been used to investigate the angular and frequency-time characteristics of HF signals propagating at frequencies above the maximum usable one (MUF) for the direct radio path Moscow-Kharkiv. The received signal spectra show presence of three families of spatial components attributed, respectively, to scattering by plasma irregularities near the middle point of the radio path, ground backscatter signals and scattering of the sounding signals by the intense plasma turbulence associated with auroral activations. It has been shown that the regions responsible for the formation of the third family components are located well inside the auroral oval. The drift velocity and direction of the auroral ionosphere plasma have been determined. The obtained estimates are consistent with the classical conception of the ionospheric plasma convection at high latitudes and do not contradict the results of investigations of the auroral ionosphere dynamics using the SuperDARN network.  相似文献   
5.
The low background values at nighttime of the mesospheric hydroxyl (OH) radical make it easier to single out the atmospheric response to the external solar forcing in Polar Regions. Because of the short lifetime of HOx, it is possible to follow the trails of Solar Energetic Particle (SEP) events in the terrestrial atmosphere, as shown by Storini and Damiani (2008). The sensitivity of this indicator makes discernible not only extreme particle events with a flux peak of several thousand pfu [1 pfu = 1 particle/(cm2 s sr)] at energies >10 MeV, but also those with lower flux up to about 300 pfu. Using data from the Microwave Limb Sounder (MLS) on board the EOS AURA satellite, we examined the correlation of OH abundance vs. solar proton flux for almost all the identified SEP events spanning from November 2004 to December 2006 (later on no more SEP events occurred during Solar Cycle no. 23). The channels at energies greater than 5 MeV and 10 MeV showed the best correlation values (r ∼ 0.90–0.95) at altitudes around 65–75 km whereas, as expected, the most energetic channels were most highly correlated at lower altitudes. Therefore, it is reasonably possible to estimate the solar proton flux from values of mesospheric OH (and viceversa) and it could be useful in studying periods with gaps in the records of solar particles.  相似文献   
6.
In preparation of ITRF2008, all geodetic technique services (VLBI, SLR, GPS and DORIS) are generating new solutions based on combination of individual analysis centers solutions. These data reprocessing are based on a selection of models, parameterization and estimation strategy unique to each analysis center and to each technique. While a good agreement can be found for models between groups, thanks to the existence of the IERS conventions, a great diversity still exist for parameter estimation, allowing possible future improvements in this direction. The goal of this study is to focus on the atmospheric drag estimation used to generate the new DORIS/IGN ignwd08 time series prepared for ITRF2008. We develop here a method to inter-compare different processing strategies. In a first step, by analyzing single-satellite solutions for a few weeks of data but for a large number of possible analysis strategies, we demonstrate that estimating drag coefficient more frequently (typically every 1–2 h instead of previously every 4–8 h) for the lowest DORIS satellites (SPOTs and Envisat) provides better geodetic results for station coordinates and polar motion. This new processing strategy also solved earlier problem found when processing DORIS data during intense geomagnetic events, such as geomagnetic storms. Differences between drag estimation strategies can mostly be found during these few specific periods of extreme geomagnetic activity (few days per year). In such a case, when drag coefficient is only estimated every 6 h or less often for single-satellite solution, a significant degradation in station coordinate accuracy can be observed (120 mm vs. 20 mm) and significant biases arose in polar motion estimation (5 mas vs. 0.3 mas). In a second step, we reprocessed a full year of DORIS data (2003) in a standard multi-satellite mode. We were able to provide statistics on a more reliable data set and to strengthen these conclusions. Our proposed DORIS analysis is easy to implement in all software packages and is now already used by several analysis centers of the International DORIS Service (IDS) when submitting reprocessed solutions for ITRF2008.  相似文献   
7.
For the first time, the International DORIS Service (IDS) has produced a technique level combination based on the contributions of seven analysis centers (ACs), including the European Space Operations Center (ESOC), Geodetic Observatory Pecny (GOP), Geoscience Australia (GAU), the NASA Goddard Space Flight Center (GSFC), the Institut Géographique National (IGN), the Institute of Astronomy, Russian Academy of Sciences (INASAN, named as INA), and CNES/CLS (named as LCA). The ACs used five different software packages to process the DORIS data from 1992 to 2008, including NAPEOS (ESA), Bernese (GOP), GEODYN (GAU, GSC), GIPSY/OASIS (INA), and GINS (LCA). The data from seven DORIS satellites, TOPEX/Poseidon, SPOT-2, SPOT-3, SPOT-4, SPOT-5, Envisat and Jason-1 were processed and all the analysis centers produced weekly SINEX files in either variance–covariance or normal equation format. The processing by the analysis centers used the latest GRACE-derived gravity models, forward modelling of atmospheric gravity, updates to the radiation pressure modelling to improve the DORIS geocenter solutions, denser parameterization of empirically determined drag coefficients to improve station and EOP solutions, especially near the solar maximum in 2001–2002, updated troposphere mapping functions, and an ITRF2005-derived station set for orbit determination, DPOD2005. The CATREF software was used to process the weekly AC solutions, and produce three iterations of an IDS global weekly combination. Between the development of the initial solution IDS-1, and the final solution, IDS-3, the ACs improved their analysis strategies and submitted updated solutions to eliminate troposphere-derived biases in the solution scale, to reduce drag-related degradations in station positioning, and to refine the estimation strategy to improve the combination geocenter solution. An analysis of the frequency content of the individual AC geocenter and scale solutions was used as the basis to define the scale and geocenter of the IDS-3 combination. The final IDS-3 combination has an internal position consistency (WRMS) that is 15 to 20 mm before 2002 and 8 to 10 mm after 2002, when 4 or 5 satellites contribute to the weekly solutions. The final IDS-3 combination includes solutions for 130 DORIS stations on 67 different sites of which 35 have occupations over 16 years (1993.0–2009.0). The EOPs from the IDS-3 combination were compared with the IERS 05 C04 time series and the RMS agreement was 0.24 mas and 0.35 mas for the X and Y components of polar motion. The comparison to ITRF2005 in station position shows an agreement of 6 to 8 mm RMS in horizontal and 10.3 mm in height. The RMS comparison to ITRF2005 in station velocity is at 1.8 mm/year on the East component, to 1.2 mm/year in North component and 1.6 mm/year in height.  相似文献   
8.
We examined some 75 observations from the low-altitude Earth orbiting DMSP, Ørsted and CHAMP satellites which were taken in the region of the nominal cusp. Our objective was to determine whether the actually observed cusp locations as inferred from magnetosheath-like particle precipitation (“particle cusp”) and intense small-scale magnetic field variations (“current cusp”), respectively, were identical and were consistent with the statistically expected latitude of the cusp derived from a huge number of charged particle spectrograms (“statistical cusp”).  相似文献   
9.
设G是一个格序群,П(G),П(m(G),P(G),C(G)分别是G的素子群,极小素子群,极子群,凸1-子群集合,Ω(G)是P(G)在C(G)中生成的闭子格。Ω(G)的元素称为G的Ω-子群。  相似文献   
10.
Radar Imaging of Mercury   总被引:1,自引:0,他引:1  
Earth-based radar has been one of the few, and one of the most important, sources of new information about Mercury during the three decades since the Mariner 10 encounters. The emphasis during the past 15 years has been on full-disk, dual-polarization imaging of the planet, an effort that has been facilitated by the development of novel radar techniques and by improvements in radar systems. Probably the most important result of the imaging work has been the discovery and mapping of radar-bright features at the poles. The radar scattering properties of these features, and their confinement to permanently shaded crater floors, is consistent with volume backscatter from a low-loss volatile such as clean water ice. Questions remain, however, regarding the source and long-term stability of the putative ice, which underscores the need for independent confirmation by other observational methods. Radar images of the non-polar regions have also revealed a plethora of bright features, most of which are associated with fresh craters and their ejecta. Several very large impact features, with rays and other bright ejecta spreading over distances of 1,000 km or more, have been traced to source craters with diameters of 80–125 km. Among these large rayed features are some whose relative faintness suggests that they are being observed in an intermediate stage of degradation. Less extended ray/ejecta features have been found for some of the freshest medium-size craters such as Kuiper and Degas. Much more common are smaller (<40 km diameter) fresh craters showing bright rim-rings but little or no ray structure. These smaller radar-bright craters are particularly common over the H-7 quadrangle. Diffuse areas of enhanced depolarized brightness have been found in the smooth plains, including the circum-Caloris planitiae and Tolstoj Basin. This is an interesting finding, as it is the reverse of the albedo contrast seen between the radar-dark maria and the radar-bright cratered highlands on the Moon.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号