首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
地面入射的大功率高频无线电波(泵波)和电离层等离子体之间的参数相互作用,能够引起静电波的激发,在一定条件下,产生不稳定性.本文用PIC静电粒子模拟方法,研究泵波与赤道电离层E区等离子体的相互作用.研究结果表明,泵波能够控制双流不稳定性的发生,在不同条件下,泵波对双流不稳定性起着稳定与不稳作用,模拟结果定性地与理论研究结果相符合,这为我们对不规则体产生的地面人工控制提供了依据.  相似文献   

2.
The article presents the results of the observation of a strong magnetic storm and two X-ray flares during the summer solstice in 2015, and their impact on the HF signals characteristics in ionospheric oblique sounding. It was found that the negative phase of the magnetic storm led to a strong degradation of the ionospheric channel, ultimately causing a long blackout on paths adjacent to subauroral latitudes. On mid-latitude paths, the decrease in 1FMOF reached ~50% relative to the average values for the quiet ionosphere. It is shown that the propagation conditions via the sporadic Es layer during the magnetic storm on a subauroral path are substantially better than those for F-mode propagation via the upper ionosphere. The delay of the sharp decrease in 1FMOF during the main phase of the magnetic storm allowed us to determine the propagation velocity of the negative phase disturbances (~100 m/s) from subauroral to mid-latitude ionosphere along two paths: Lovozero – Yoshkar-Ola and Cyprus – Nizhny Novgorod. It is shown that both the LOF and the signal/noise ratio averaged over the frequency band corresponding to the propagation mode via the sporadic Es layer correlate well with the auroral AE index. Using an over-the-horizon chirp radar with a bistatic configuration on the Cyprus – Rostov-on-Don path, we located small-scale scattering irregularities responsible for abnormal signals in the region of the equatorial boundary of the auroral oval.  相似文献   

3.
It is well known that the ionosphere affects radio wave propagation especially in the high frequency (HF) range. HF radio waves reflected by the ionosphere can reach considerable distances, often with changes in amplitude, phase, and frequency. The ionosphere is a dispersive in frequency and time, bi-refractive, absorbing medium, in which multipath propagation due to traveling irregularities is very frequent. The traveling irregularities undulate the reflecting ionospheric layer, introducing variations in signal amplitude (fading). In this multipath time variant channel fading is mainly considered, even though it is not the sole effect. Echo signals from a single reflection, as in ionospheric vertical sounding (VIS) techniques, are affected by a certain degree of variability even in quiet ionospheric conditions. In this work the behavior of the ionospheric channel is studied and characterized by observing the power variation of received echoes using the VIS technique. Multipath fading was analyzed quantifying the power variation of the signal echo due to irregularities on a temporal scale from 0.5 to 256 s. An experimental set-up derived from an ionosonde was implemented and the analysis was performed employing a special numerical algorithm operating off-line on the acquired time sequence of the signal. The gain-loss of the irregularity shapes are determined in some special cases.  相似文献   

4.
HF radio wave observations have been carried out with an oblique ionospheric sounding (OIS) method on the radio path from St. Petersburg to Longyearbyen (Svalbard), and experimental ionograms were obtained for December 2001. These ionograms have been analysed to investigate the impact of the main ionospheric trough (MIT) and magnetic disturbances on the signals on this path. The observations during weakly disturbed (Kр = 2) magnetic conditions on 14–15 December 2001 were compared with predictions from ray-tracing through a numerical model of the ionosphere. The ray-tracing computer program synthesizes the OIS ionograms by means of the “shooting method”. This method calculates trajectories of HF radio waves for different values of elevation angle and transmission frequency. There was a variety of calculated trajectories, from which we choose those which reach the receiver, and the selected paths provide a synthesis of the oblique ionograms. To simulate HF radio wave propagation, we apply a three-dimensional distribution of the electron density calculated with the mathematical model of the high-latitude ionosphere developed in the Polar Geophysical Institute (PGI). These numerical simulations permit us to interpret specific peculiarities of the OIS data such as abnormal propagation modes, increased delays of signals, enhanced MOF (maximum observed frequency) values etc. New results of the study are summarised as follows. (1) An unusual feature of the propagation along the path is the change of propagation mechanism during substorms on entering a path midpoint (or 1-hop reflection point) to the MIT. (2) Even weak substorms, having the distinguished intensities, lead to the appearance of different types of irregularities observed by the CUTLASS radar and therefore to the different propagation modes and F2MOF values. (3) The PGI model of the ionosphere was first used for ray-tracing at high latitudes. The model results are basically in a good qualitative agreement with experimental observations. This model provides the satisfactory agreement between the calculated and experimental F2MOF values while not correctly representing the fine structure of the experimental OIS ionograms at night. An agreement between the calculated and experimental data is better for day and evening hours than at night.  相似文献   

5.
The morphology of the auroral, sub-auroral and mid-latitude trough region of the ionosphere is strongly dependent on the interplanetary magnetic field and the level of geomagnetic activity. Changes in the morphology impact on the characteristics of HF signals propagating through these regions of the ionosphere. In order to develop a better understanding of these effects, a number of experiments have recently been undertaken in which the time of flight and direction of arrival of HF signals have been measured over several paths aligned along the mid-latitude trough. In addition, observations made by the DEMETER satellite of the mid-latitude trough electron density structure, dynamics and wave activity were used in order to investigate the effect of the fine structure of the ionosphere on HF signals. For two types of relatively common night time HF time of flight and azimuth of arrival behaviour (referred to here and elsewhere as ‘Type 1’ and ‘Type 2’ propagation), the signal behaviour is consistent with scatter from irregularities in the auroral region in the one case, and from irregularities present on the floor of the trough in the other.  相似文献   

6.
运用波动理论,讨论背景为各向异性、不均匀的随机起伏电离层中高频电波的传播和散射问题,给出了电离层不均匀体散射引起的反射回波波场的起伏,并在垂测条件下计算了接收波场的相位与振幅起伏的谱分布。   相似文献   

7.
Wave effects are discussed pointing to improvement of whistler propagation in the ionosphere illuminated by a powerful radio wave. The large scale irregularities (ducts) responsible for these effects are formed in the illuminated ionospheric region by the process of electron heating by the fields of the pump wave and excited plasma oscillations. These irregularities may also be created in the ionosphere and plasmasphere by fluxes of suprathermal electrons accelerated by the plasma turbulence in the reflection region of the pump wave.  相似文献   

8.
The concept of the Global Electric Circuit (GEC) provides an explanation of the existence of a vertical atmospheric electric field and coupling between the ground and ionosphere. Presently, ionospheric physics pays more attention to electric fields and coupling processes in the polar and auroral regions, whereas in other areas the potential difference between the ground and ionosphere usually is not taken into account. Regional processes exist, however, that are able to significantly affect the GEC parameters and through modification of the ionospheric potential to create plasma density irregularities of different scales within the ionosphere. One such source of ionosphere modification is air ionization in the vicinity of active tectonic faults, which takes place due to increased radon emanation. This paper considers the process of local modification of the GEC and corresponding ionospheric variability due to tectonic activity.  相似文献   

9.
Degradation of transionospheric radio signals and operation failures during ionospheric disturbances constitute a crucial factor of space weather influence on radio engineering satellite systems performance. We found that during the main phase of strong magnetic storms in 2000–2003 when the auroral oval expands into mid-latitudes, its southern boundary develops a region with intense small-scale electron density irregularities. Such irregularities may cause strong amplitude scintillations of GPS signals at both GPS operating frequencies. The another consequence of it was significant random GPS signal phase fluctuations, breaking-down of signal tracking, and sharp increasing of GPS positioning errors as a result.  相似文献   

10.
基于IGS提供的TEC数据, 研究了2003年10月大磁暴期间的暴时密度增强(Storm Enhanced Density, SED)现象; 利用GPS观测数据, 计算出ROTI (Standard deviations of ROT)指数, 分析了SED边界附近电离层小尺度不均匀体结构的时间和空间演变. 研究表明, 在磁暴主相期间SED边界附近不均匀体随着磁暴的发展逐渐增多; 在主相的中后期不均匀体的分布密集度达到最大; 在恢复相期间, 不均匀体分布很少; 随着磁暴的发展, 不均匀体开始主要集中在40~45oN范围内, 随后向高纬漂移, 主要集中在45~55oN范围内.   相似文献   

11.
Effects of ionospheric modification produced by powerful high frequency radio waves are studied using the method of field-aligned scattering of diagnostic HF radio signals. Observations of scattered HF signals have been made by the Doppler spectrum method. Analysis of the experimental data shows the appearance of quasiperiodic variations in Doppler frequency shift fd, with periods 30–60 s during the heating cycles. Powerful HF waves are assumed to excite the Alfvén resonator generating oscillations of the magnetic field lines in the heated region and giving rise to fd artificial variations and magnetic pulsations. In the case of continuous action of the powerful HF transmitter ionospheric waves are sometimes observed with periods 12–25 min, typical of medium-scale travelling ionospheric disturbances.  相似文献   

12.
Important observational manifestations of subvisible mesospheric dust are Polar Mesospheric Summer Echoes (PMSEs) which are produced by scattering from electron irregularities produced by dust charging. It has been observed that the PMSE strength can be artificially modified by using a ground-based ionospheric heating facility to perturb the electron irregularity source region that is believed to produce PMSE. Recently it has become evident that significant diagnostic information may be available about the dust layer from the temporal behavior of the electron irregularities during the heating process which modifies the background electron temperature. Particularly interesting and important periods of the temporal behavior are during the turn-on and turn-off of the radio wave heating. Most past theoretical models and experimental investigations have concentrated primarily on the later period. The objective here is to consider the temporal behavior and possibilities for diagnostic information available during the turn-on period of the radio wave. First, approximate analytical models are developed and compared to a more accurate full computational model as a reference. Then from the temporal behavior of the electron irregularities during the turn-on of the radio wave, the analytical models are used to obtain possible diagnostic information for various charged dust and background plasma quantities.  相似文献   

13.
Propagation mechanisms of lateral (non-great-circle) signals on a high-latitude HF radio path during magnetospheric substorms that occurred in the day-time have been considered. The path is equipped with oblique ionospheric sounding (OIS) from Murmansk to St. Petersburg. The OIS method gives the possibility to determine propagation modes, MOF (maximum observed frequency) values, signal delays, etc. Data of the CUTLASS radar, the IMAGE magnetometer system, the Finnish riometer chain, and the Tromso ionosonde were also used for the analysis. The main results are the following: (1) the lateral signal propagation takes place, as a rule, if the path midpoint is located near the irregularity region that moves sharply from high to low latitudes. The lateral signal propagation appearing during day-time is a new effect. (2) Formation of dense field-aligned irregularities during a substorm leads to decreasing F2MOF values on radio paths. These results can be useful for problems of radiolocation, HF communications and navigation.  相似文献   

14.
大功率无线电波与低电离层的相互作用   总被引:13,自引:3,他引:13  
地面入射的大功率无线电波能加热电离层等离子体,引起电离层电子温度和密度的扰动,实现电离层的地面人工变态.本文中,着重考虑电波和电离层相互作用过程中的自吸收,构造一个自治的相互作用模型,在一定功率和频率的加热电波作用下,利用该模型计算了白天低电离层电子温度和由温度的变化而引起的电子密度的变化.计算结果表明,在白天低电离层,电波的自吸收在90km以下比较显著,而最大温度变化在70km高度上,大约增加了2倍.在α复合的假设下,电子密度变化幅度随高度的增加而减少,在70km处,大约增加55%、120km处则为4%左右.  相似文献   

15.
The high-frequency (HF) emission in near-Earth space from various powerful transmitters (radio communications, radars, broadcasting, universal time and navigation stations, etc.) form an integral part of the modern world that it cannot do without. In particular, special-purpose research facilities equipped with powerful HF transmitters are used successfully for plasma experiments and local modification of the ionosphere. In this work, we are using the results of a complex space-ground experiment to show that exposure of the subauroral region to HF emission can not only cause local changes in the ionosphere, but can also trigger processes in the magnetosphere–ionosphere system that result in intensive substorm activity (precipitations of high-energy particles, aurorae, significant variations in the ionospheric parameters and, as a consequence, in radio propagation conditions).  相似文献   

16.
Equatorial plasma bubbles (EPBs) are common features of the equatorial and low-latitude ionosphere and are known to cause radio wave scintillation which leads to the degradation of communication and navigation systems. Although these structures have been studied for decades, a full understanding of their evolution and dynamics remains important for space weather mitigation purposes. In this study, we present cases of EPBs occurrences around April and July 2012 geomagnetic storm periods over the African equatorial sector. The EPBs were observed from the Communications/Navigation Outage Forecasting System (C/NOFS) and generally correlated well to the ionospheric irregularities observed from the Global Positioning System total electron content (GPS-TEC) measurements (rate of TEC change, ROT). This study revealed that the evolution of the EPBs during moderate storms is controlled by the strength of the daytime equatorial electrojet (EEJ) currents regardless of the strength of the equatorial ionization anomaly (EIA), the latter is observed during the July storm case in particular. These effects were more evident during the main and part of the early recovery phases of the geomagnetic storm days considered. However, the evening hours TEC gradients between regions of the magnetic equator and ionization crests also played roles in the existence of ionospheric irregularities.  相似文献   

17.
基于GPS信号的电离层S4指数计算方法研究   总被引:3,自引:2,他引:1  
电波穿越电离层时,由于受到电离层不均匀结构的影响,电波的幅度、相位、时延等有时会发生快速抖动,这就是所谓的电磁波电离层闪烁现象.电离层闪烁会影响卫星通信系统的质量和导航系统的精度.本文分析了GPS信号研究电离层闪烁的基本原理,讨论了电离层闪烁监测中S4指数的计算方法及其修正方法.通过数据模拟,评估了原始S4指数计算方法及其修正方法的性能特点.针对原始S4指数计算方法及修正方法的不足,提出了一种新的修正方法,并采用实测GPS数据对上述方法进行了检验.结果表明,上述方法是有效的和可靠的.   相似文献   

18.
一种电离层场向不规则体各向异性散射模型   总被引:1,自引:0,他引:1  
电离层场向不规则体散射具有很强的方向性, 利用电离层场向不规则体散 射进行VHF频段超视距通信时, 需要准确可靠地确定其散射分布特性及路径损 耗等参数. 基于电离层不规则体场向散射的特点, 以地球地磁场为坐标系统, 提出了一种电离层场向不规则体各向异性散射模型, 该模型能够计算前向和后 向散射链路的路径损耗分布、时延展宽和相干带宽等参数, 同时运用该模型对 雷达横向截面的计算结果与已有文献的数据结果进行对比, 证明了该模型的准确性. 该模型能够计算电离层场向不规则体VHF频段的散射分布及路径损耗等参数, 为VHF散射通信链路的设计、布站提供依据和技术指导.   相似文献   

19.
The occurrence of radio signal fading events caused by ionospheric absorption plays an important role in the performance of radio-communication systems. It is necessary to know the magnitude and time-scale of such events in order to specify technical parameters of the communication system to be used. Generally, fading events are associated with solar flares, which are characterized by sudden increase in the solar X-ray flux that causes an increase in the ionization in the lower ionosphere. The abrupt increase of ionization causes the absorption of radio waves propagating in the Earth–ionosphere wave-guide and is reported as radio signal fading events. A simple experiment to monitor the behavior of lower ionosphere has been carried out at the Southern Space Observatory-SSO/INPE (29.43°S, 53.8°W), located in southern Brazil. The experiment is basically a computer controlled radio receiver that records the received signal strength of Amplitude Modulated (AM) radio signals in the HF (High Frequencies) range. We analyzed data of the 6 MHz beacon signal that has been transmitted by a broadcasting radio station located about 400 km from the observation site. In this work we present initial results of daily variation of the received signal strength and fading events associated with solar flares observed in the 6 MHz signal monitored by the experiment during 2001. X-ray solar flux data from the GOES-8 satellite were used to identify X-ray solar bursts associated with solar flares. Based on the one-year data collected by the experiment, a statistical summary of fading occurrences and their correlation with solar flares, as well as the distributions of time-scales and magnitudes of such events are presented.  相似文献   

20.
Es层是存在于电离层中的电子密度非常高的偶发E层(Sporadic E),其电子密度可达常规E层的100倍.电离层Es能够反射原本穿透F层的VHF低频段(30~150MHz)无线电波,而且对HF高频段(10~30MHz)无线电波传播具有显著影响.运用垂测和斜测观测数据,研究HF频段Es层电波传播特征,得到了不同类型及不同高度Es层的衰减系数.根据f0Es的日变化规律,可得HF频段衰减系数的日变化规律,进而分析并得到Es层对短波传播的影响.不存在电离层Es时,通常无法通过电离层实现VHF超远距离通信.为了对VHF链路通过电离层Es的传播衰减进行定量分析,根据EBU多条链路的观测结果,拟合并建立了电离层Es衰减模型.将该模型、ITU模型和观测数据进行对比,发现本文建立的模型准确度更高.利用建立的模型,对电离层Es不同临频f0Es条件下接收信号场强和电压随传播距离的变化进行了计算,结果可为VHF链路设计及建立提供参考.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号