首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13408篇
  免费   2148篇
  国内免费   2015篇
航空   10055篇
航天技术   2931篇
综合类   1489篇
航天   3096篇
  2024年   52篇
  2023年   230篇
  2022年   342篇
  2021年   529篇
  2020年   563篇
  2019年   671篇
  2018年   785篇
  2017年   710篇
  2016年   765篇
  2015年   676篇
  2014年   723篇
  2013年   661篇
  2012年   918篇
  2011年   973篇
  2010年   679篇
  2009年   697篇
  2008年   936篇
  2007年   1027篇
  2006年   957篇
  2005年   754篇
  2004年   647篇
  2003年   535篇
  2002年   371篇
  2001年   321篇
  2000年   279篇
  1999年   244篇
  1998年   248篇
  1997年   216篇
  1996年   142篇
  1995年   175篇
  1994年   163篇
  1993年   121篇
  1992年   116篇
  1991年   106篇
  1990年   87篇
  1989年   64篇
  1988年   55篇
  1987年   21篇
  1986年   6篇
  1984年   5篇
  1981年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
有源诱偏技术是雷达对抗反辐射导弹的一种重要手段,可以大大降低反辐射导弹的作战效能。为提高对敌目标的精确打击能力,在分析闪烁诱饵诱偏原理的基础上,针对有源诱偏干扰下被动雷达测角精度与稳定度不高的问题,通过对有源诱偏信号的时域特征进行分析,提出一种基于脉冲前沿检测的DOA聚类分选算法,找出前沿超前的辐射源信号,实现了高性能抗有源诱偏干扰和高精度抗干扰测向。仿真结果表明,该技术可以有效对抗四点源有源诱偏干扰。  相似文献   
2.
赵海涛  熊笑  谢军  郑晋军  谷岩 《宇航学报》2021,42(7):889-894
面向导航卫星中断频次的定量分析需求,该文分析导航卫星中断产生的主要原因,给出中断频次分析的流程,并针对分析过程中的三个关键问题,研究提出具体实施方法,包括通过相关性分析快速定位底层中断事件,通过中断树建立指标分析模型,并融合在轨数据、地面试验数据快速预估得到底层功能异常率等。最后通过示例进一步说明中断频次分析过程。该文方法已应用于北斗导航卫星工程。  相似文献   
3.
A new orbit-attitude-vibration coupled dynamic model of the tethered solar power satellite (Tethered SPS) is established based on absolute nodal coordinate formulation. The Hamilton’s equation of the system is derived by introducing generalized momentum through Legendre transformation. The correctness of the proposed model is verified by an example. The dynamic characteristics of the Tethered SPS are studied using the symplectic Runge-Kutta method. Simulation results show that the orbital radius and the total energy of the system are well preserved. The attitude of the system is unstable when the mass of the bus system is small. However, the attitude stability is dependent on some other parameters of the system, which requires further studies. It is also found that the average tether force/deformation can be roughly estimated by simplifying the solar panel as a particle. The proposed model can be used to study the orbit-attitude-vibration coupled dynamics and control problems.  相似文献   
4.
《中国航空学报》2020,33(11):2907-2920
This paper investigates a time-varying anti-disturbance formation problem for a group of quadrotor aircrafts with time-varying uncertainties and a directed interaction topology. A novel Finite-Time Convergent Extended State Observer (FTCESO) based fully-distributed formation control scheme is proposed to enhance the disturbance rejection and the formation tracking performances for networked quadrotors. By adopting the hierarchical control strategy, the multi-quadrotor system is separated into two subsystems: the outer-loop cooperative subsystem and the inner-loop attitude subsystem. In the outer-loop subsystem, with the estimation of disturbing forces and uncertain dynamics from FTCESOs, an adaptive consensus theory based cooperative controller is exploited to ensure the multiple quadrotors form and maintain a time-varying pattern relying only on the positions of the neighboring aircrafts. In the inner-loop subsystem, the desired attitude generated by the cooperative control law is stably tracked under a FTCESO-based attitude controller in a finite time. Based on a detailed algorithm to specify the cooperative control protocol, the feasibility condition to achieve the time-varying anti-disturbance formation tracking is derived and the rigorous analysis of the whole closed-loop multi-quadrotor system is given. Some numerical examples are conducted to intuitively demonstrate the effectiveness and the improvements of the proposed control framework.  相似文献   
5.
《中国航空学报》2020,33(11):2851-2863
Recent years have witnessed a booming of the industry of civil Unmanned Aircraft System (UAS). As an emerging industry, the UAS industry has been attracting great attention from governments of all countries and the aviation industry. UAS are highly digitalized, informationized, and intelligent; therefore, their integration into the national airspace system has become an important trend in the development of civil aviation. However, the complexity of UAS operation poses great challenges to the traditional aviation regulatory system and technical means. How to prevent collisions between UASs and between UAS and manned aircraft to achieve safe and efficient operation in the integrated operating airspace has become a common challenge for industry and academia around the world. In recent years, the international community has carried out a great amount of work and experiments in the air traffic management of UAS and some of the key technologies. This paper attempts to make a review of the UAS separation management and key technologies in collision avoidance in the integrated airspace, mainly focusing on the current situation of UAS Traffic Management (UTM), safety separation standards, detection system, collision risk prediction, collision avoidance, safety risk assessment, etc., as well as an analysis of the bottlenecks that the current researches encountered and their development trends, so as to provide some insights and references for further research in this regard. Finally, this paper makes a further summary of some of the research highlights and challenges.  相似文献   
6.
《中国航空学报》2020,33(10):2716-2727
In this paper, an Unmanned Aerial Vehicle (UAV) enabled Mobile Edge Computing (MEC) system is studied, in which UAV acts as server to offer computing offloading service to the Mobile Users (MUs) with limited computing capability and energy budget. We aim to minimize the total energy consumption of MUs by jointly optimizing the bit allocation for uplink, computing at the UAV and downlink, along with the UAV trajectory in a unified framework. To this end, a trajectory constraint model is employed to avoid sudden changes of velocity and acceleration during flying. Due to high-order information in use, we lead to a more reasonable nonconvex optimization problem than prior arts. An Alternating Direction Method of Multipliers (ADMM) method is introduced to solve the optimization problem, which is decomposed into a set of easy sub-problems, to meet the requirement on the efficiency in edge computing. Numerical results demonstrate that our approach leads a smoother UAV trajectory, significantly save the energy consumption for UAV during flying.  相似文献   
7.
8.
The overlapping carrier frequencies L1/E1, L5/E5a and B2/E5b from GPS/Galileo/BDS allow inter-system double-differencing of observations, which shows a clear advantage over differencing of the observations of each constellation independently. However, the inter-system biases destroy the integer nature of the inter-system double-differencing ambiguities. Two methods of direct rounding and parameter estimation are used to determine the ISB value. By analyzing data collected from Curtin University from 2015 to 2018, the phase and code inter-system bias (ISB) are related to the receiver type, firmware version and the selected overlapping frequency. Upgrade of receiver firmware version results in changes of ISB values. For example, the upgrade of Javad firmware in Dec, 15, 2017 causes the difference of 0.5 cycles ISB between BDS GEO and non-GEO satellites. By comparing the three dynamic models which include white noise process, random walk process, and random constant in the parameter estimation method, the ISB determined by the random constant model is consistent with the value obtained by the direct rounding method. After the calibration of ISBs, the performances of tightly combined positioning are assessed. The success rate of ambiguity resolution and accuracy of positioning for the tight combination (TC) are significantly improved in comparison with that for the loose combination (LC) over short baselines. For L5/E5a, on which only few satellites can be observed, the maximum increase in success rates of ambiguity resolution can reach 31.7%, i.e., from 54.9% of LC to larger than 86.6% of TC, and the positioning accuracies can even be increased by 0.13 m, i.e., from 0.208 of LC to 0.074 m of TC in East direction for the mix-receiver TRIMBLE NETR9-SEPT POLARX4 in 2018.  相似文献   
9.
This paper presents a Fault Mode Probability Factor (FMPF) based Fault-Tolerant Control (FTC) strategy for multiple faults of Dissimilar Redundant Actuation System (DRAS) composed of Hydraulic Actuator (HA) and Electro-Hydrostatic Actuator (EHA). The long-term service and severe working conditions can result in multiple gradual faults which can ultimately degrade the system performance, resulting in the system model drift into the fault state characterized with parameter uncertainty. The paper proposes to address this problem by using the historical statistics of the multiple gradual faults and the proposed FMPF to amend the system model with parameter uncertainty. To balance the system model precision and computation time, a Moving Window (MW) method is used to determine the applied historical statistics. The FMPF based FTC strategy is developed for the amended system model where the system estimation and Linear Quadratic Regulator (LQR) are updated at the end of system sampling period. The simulations of DRAS system subjected to multiple faults have been performed and the results indicate the effectiveness of the proposed approach.  相似文献   
10.
《中国航空学报》2020,33(1):255-270
This study creates and combines the general maneuver libraries for fixed-wing aircraft to implement tactical maneuvers. First, the generalized maneuver libraries are established by analyzing the characteristics of tactical maneuvers required in battlefields. The 7th order polynomial is applied to both the creation of the maneuver libraries and the generation of the trajectories or flight paths for modal inputs. To track the desired trajectory, we design the Attitude Command Attitude Hold (ACAH) system and the Rate Command Rate Hold (RCRH) system using Model Following Controller (MFC). Moreover, the Line-of-Sight (LOS) guidance law is designed. In particular, the CONDUIT® is employed to optimize the gains so that the control systems meet the aircraft Handling Qualities (HQ) criteria. Finally, flight simulations are performed for the longitudinal loop, immelmann-turn, and climb-slalom-descent maneuvers to verify that tactical aggressive maneuvers are realizable via the combination of maneuver libraries. This study can contribute to the development of flight techniques for aircraft tactical maneuvers and to the revision of air force operational manuals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号