首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
航空   2篇
航天   11篇
  2018年   1篇
  2013年   4篇
  2012年   4篇
  2008年   1篇
  2007年   2篇
  2005年   1篇
排序方式: 共有13条查询结果,搜索用时 531 毫秒
1.
Astronauts are often on a voluntarily reduced energy intake during space missions, possibly caused by a metabolic or emotional stress response with involvement of the central serotonergic system (SES). We investigated 24 h urinary excretion (24 h-E) of serotonin (5-HT) and 5-hydroxyindol acidic acid as indicators of the SES in healthy males under two different normocaloric conditions: normal physical activity (NPA) and -6 degree head-down-tilt (HDT). HDT or NPA were randomly arranged with a recovery period of 6 months in between. 24 h-E of hormones varied widely among individuals. Values were higher in HDT compared to NPA. Assuming that the 24 h-E values are, beside being indicators for alterations in the number and metabolism of platelets. Also indicators of central SES, HDT condition seems to activate central SES in a higher degree compared to NPA. Therefore, changes in central SES might be involved in the mechanisms associated with space flight or microgravity, including possible maladaptations such as voluntary undernutrition.  相似文献   
2.
The determination of the microbial load of a spacecraft en route to interesting extraterrestrial environments is mandatory and currently based on the culturable, heat-shock-surviving portion of microbial contaminants. Our study compared these classical bioburden measurements as required by NASA's and ESA's guidelines for the microbial examination of flight hardware, with molecular analysis methods (16S rRNA gene cloning and quantitative PCR) to further develop our understanding of the diversity and abundance of the microbial communities of spacecraft-associated clean rooms. Three samplings of the Herschel Space Observatory and its surrounding clean rooms were performed in two different European facilities. Molecular analyses detected a broad diversity of microbes typically found in the human microbiome with three bacterial genera (Staphylococcus, Propionibacterium, and Brevundimonas) common to all three locations. Bioburden measurements revealed a low, but heterogeneous, abundance of spore-forming and other heat-resistant microorganisms. Total cell numbers estimated by quantitative real-time PCR were typically 3 orders of magnitude greater than those determined by viable counts, which indicates a tendency for traditional methods to underestimate the extent of clean room bioburden. Furthermore, the molecular methods allowed the detection of a much broader diversity than traditional culture-based methods.  相似文献   
3.
Abstract

The nature of route learning in terms of the memorizing of landmarks was investigated. In Experiment 1, participants memorized landmarks while being guided through a computer-simulated hallway (dynamic, with spatial context), or while viewing the landmarks one by one in front of a black background (static, without context). Two more conditions completed the 2 × 2 design. One condition preserved the dynamic landmark viewing properties (observers approached each object, passed it, turned to the next object, and so on), but the background was black (dynamic, without context). In the other condition the observer saw a stationary display of each object within a hallway, but did not approach the object (static, with context). Serial recall was much better after viewing the landmarks in the dynamic presentation format with spatial context than in the other conditions. Experiment 2 showed that the superior performance in the dynamic condition with context was abolished when all hallway segments were equally long. This implies that metric information is a component of route knowledge at a very early stage, which is incompatible with the dominant framework, but is compatible with the alternative framework for spatial microgenesis.  相似文献   
4.
Abstract

Spatial prepositions, more specifically projective prepositions, such as in front of or behind can be interpreted in different ways. Their interpretation depends on the spatial perspective taken as the basis for determining the reference frame's orientation. In 3 series of placement experiments with German speakers, we examined whether the interpretation of projective prepositions in a motion context is affected by the verb used in a spatial instruction. Results suggest that verb semantics is a factor accounting for previously observed seemingly social-situational differences in the interpretation of projective prepositions. Specifically, the findings indicate that, relative to a car as reference object, the semantic aspect of motion interruption associated with some verbs leads to a higher proportion of deictic interpretations determined by the direction from which one is approaching the car. This verb effect on the interpretation of spatial prepositions can be explained by an activation of the temporal dimension through stop-implying verbs, which is integrated into the spatial situation model of the perceived dynamic scene making the deictic frame of reference more compatible. The experimental evidence also shows that verb semantics can account for previously unexplained cross-linguistic differences, and is related to patterns concerning the prepositional inventory of languages.  相似文献   
5.
Good progress has been made in the past few years to better understand the XUV evolution trend of Sun-like stars, the capture and dissipation of hydrogen dominant envelopes of planetary embryos and protoplanets, and water loss from young planets around M dwarfs. This chapter reviews these recent developments. Observations of exoplanets and theoretical works in the near future will significantly advance our understanding of one of the fundamental physical processes shaping the evolution of solar system terrestrial planets.  相似文献   
6.
The changing view of planets orbiting low mass stars, M stars, as potentially hospitable worlds for life and its remote detection was motivated by several factors, including the demonstration of viable atmospheres and oceans on tidally locked planets, normal incidence of dust disks, including debris disks, detection of planets with masses in the 5-20 M() range, and predictions of unusually strong spectral biosignatures. We present a critical discussion of M star properties that are relevant for the long- and short-term thermal, dynamical, geological, and environmental stability of conventional liquid water habitable zone (HZ) M star planets, and the advantages and disadvantages of M stars as targets in searches for terrestrial HZ planets using various detection techniques. Biological viability seems supported by unmatched very long-term stability conferred by tidal locking, small HZ size, an apparent short-fall of gas giant planet perturbers, immunity to large astrosphere compressions, and several other factors, assuming incidence and evolutionary rate of life benefit from lack of variability. Tectonic regulation of climate and dynamo generation of a protective magnetic field, especially for a planet in synchronous rotation, are important unresolved questions that must await improved geodynamic models, though they both probably impose constraints on the planet mass. M star HZ terrestrial planets must survive a number of early trials in order to enjoy their many Gyr of stability. Their formation may be jeopardized by an insufficient initial disk supply of solids, resulting in the formation of objects too small and/or dry for habitability. The small empirical gas giant fraction for M stars reduces the risk of formation suppression or orbit disruption from either migrating or nonmigrating giant planets, but effects of perturbations from lower mass planets in these systems are uncertain. During the first approximately 1 Gyr, atmospheric retention is at peril because of intense and frequent stellar flares and sporadic energetic particle events, and impact erosion, both enhanced, the former dramatically, for M star HZ semimajor axes. Loss of atmosphere by interactions with energetic particles is likely unless the planetary magnetic moment is sufficiently large. For the smallest stellar masses a period of high planetary surface temperature, while the parent star approaches the main sequence, must be endured. The formation and retention of a thick atmosphere and a strong magnetic field as buffers for a sufficiently massive planet emerge as prerequisites for an M star planet to enter a long period of stability with its habitability intact. However, the star will then be subjected to short-term fluctuations with consequences including frequent unpredictable variation in atmospheric chemistry and surficial radiation field. After a review of evidence concerning disks and planets associated with M stars, we evaluate M stars as targets for future HZ planet search programs. Strong advantages of M stars for most approaches to HZ detection are offset by their faintness, leading to severe constraints due to accessible sample size, stellar crowding (transits), or angular size of the HZ (direct imaging). Gravitational lensing is unlikely to detect HZ M star planets because the HZ size decreases with mass faster than the Einstein ring size to which the method is sensitive. M star Earth-twin planets are predicted to exhibit surprisingly strong bands of nitrous oxide, methyl chloride, and methane, and work on signatures for other climate categories is summarized. The rest of the paper is devoted to an examination of evidence and implications of the unusual radiation and particle environments for atmospheric chemistry and surface radiation doses, and is summarized in the Synopsis. We conclude that attempts at remote sensing of biosignatures and nonbiological markers from M star planets are important, not as tests of any quantitative theories or rational arguments, but instead because they offer an inspection of the residues from a Gyr-long biochemistry experiment in the presence of extreme environmental fluctuations. A detection or repeated nondetections could provide a unique opportunity to partially answer a fundamental and recurrent question about the relation between stability and complexity, one that is not addressed by remote detection from a planet orbiting a solar-like star, and can only be studied on Earth using restricted microbial systems in serial evolution experiments or in artificial life simulations. This proposal requires a planet that has retained its atmosphere and a water supply. The discussion given here suggests that observations of M star exoplanets can decide this latter question with only slight modifications to plans already in place for direct imaging terrestrial exoplanet missions.  相似文献   
7.
The Urey organic and oxidant detector consists of a suite of instruments designed to search for several classes of organic molecules in the martian regolith and ascertain whether these compounds were produced by biotic or abiotic processes using chirality measurements. These experiments will also determine the chemical stability of organic molecules within the host regolith based on the presence and chemical reactivity of surface and atmospheric oxidants. Urey has been selected for the Pasteur payload on the European Space Agency's (ESA's) upcoming 2013 ExoMars rover mission. The diverse and effective capabilities of Urey make it an integral part of the payload and will help to achieve a large portion of the mission's primary scientific objective: "to search for signs of past and present life on Mars." This instrument is named in honor of Harold Urey for his seminal contributions to the fields of cosmochemistry and the origin of life.  相似文献   
8.
For more than a decade Kayser-Threde, a medium-sized enterprise of the German space industry, has been involved in astrobiology research in partnership with a variety of scientific institutes from all over Europe. Previous projects include exobiology research platforms in low Earth orbit on retrievable carriers and onboard the Space Station. More recently, exobiology payloads for in situ experimentation on Mars have been studied by Kayser-Threde under ESA contracts, specifically the ExoMars Pasteur Payload. These studies included work on a sample preparation and distribution systems for Martian rock/regolith samples, instrument concepts such as Raman spectroscopy and a Life Marker Chip, advanced microscope systems as well as robotic tools for astrobiology missions. The status of the funded technical studies and major results are presented. The reported industrial work was funded by ESA and the German Aerospace Center (DLR).  相似文献   
9.
ABSTRACT

This study investigated the effects of featural information (landmarks) and geometric information (pre-exposure to a structural map) and their possible interaction during the process of spatial knowledge acquisition of 8- and 11-year-old children and adults in a virtual environment. The study confirmed the well-known result of a developmental achievement in spatial cognition from childhood to adulthood. Although landmarks and the pre-exposure to a structural map did not affect the time to learn a specific route, they influenced the use of behavior in spatial learning and eased the acquisition of spatial knowledge measured by a route reversal and map-drawing tasks. Children and adults are able to integrate featural and geometric information in the spatial knowledge acquisition process in an environmental space, but their integration depends on the spatial processing stages that are investigated. Moreover, it was successfully demonstrated that the use of desktop virtual environments seems to be appropriate to investigate the development of spatial cognition.  相似文献   
10.
The evolution and escape of the martian atmosphere and the planet’s water inventory can be separated into an early and late evolutionary epoch. The first epoch started from the planet’s origin and lasted ~500 Myr. Because of the high EUV flux of the young Sun and Mars’ low gravity it was accompanied by hydrodynamic blow-off of hydrogen and strong thermal escape rates of dragged heavier species such as O and C atoms. After the main part of the protoatmosphere was lost, impact-related volatiles and mantle outgassing may have resulted in accumulation of a secondary CO2 atmosphere of a few tens to a few hundred mbar around ~4–4.3 Gyr ago. The evolution of the atmospheric surface pressure and water inventory of such a secondary atmosphere during the second epoch which lasted from the end of the Noachian until today was most likely determined by a complex interplay of various nonthermal atmospheric escape processes, impacts, carbonate precipitation, and serpentinization during the Hesperian and Amazonian epochs which led to the present day surface pressure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号