首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
航空   5篇
  2015年   1篇
  2013年   2篇
  2004年   1篇
  1999年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
Lacking plate tectonics and crustal recycling, the long-term evolution of the crust-mantle system of Mars is driven by mantle convection, partial melting, and silicate differentiation. Volcanic landforms such as lava flows, shield volcanoes, volcanic cones, pyroclastic deposits, and dikes are observed on the martian surface, and while activity was widespread during the late Noachian and Hesperian, volcanism became more and more restricted to the Tharsis and Elysium provinces in the Amazonian period. Martian igneous rocks are predominantly basaltic in composition, and remote sensing data, in-situ data, and analysis of the SNC meteorites indicate that magma source regions were located at depths between 80 and 150 km, with degrees of partial melting ranging from 5 to 15 %. Furthermore, magma storage at depth appears to be of limited importance, and secular cooling rates of 30 to 40 K?Gyr?1 were derived from surface chemistry for the Hesperian and Amazonian periods. These estimates are in general agreement with numerical models of the thermo-chemical evolution of Mars, which predict source region depths of 100 to 200 km, degrees of partial melting between 5 and 20 %, and secular cooling rates of 40 to 50 K?Gyr?1. In addition, these model predictions largely agree with elastic lithosphere thickness estimates derived from gravity and topography data. Major unknowns related to the evolution of the crust-mantle system are the age of the shergottites, the planet’s initial bulk mantle water content, and its average crustal thickness. Analysis of the SNC meteorites, estimates of the elastic lithosphere thickness, as well as the fact that tidal dissipation takes place in the martian mantle indicate that rheologically significant amounts of water of a few tens of ppm are still present in the interior. However, the exact amount is controversial and estimates range from only a few to more than 200 ppm. Owing to the uncertain formation age of the shergottites it is unclear whether these water contents correspond to the ancient or present mantle. It therefore remains to be investigated whether petrologically significant amounts of water of more than 100 ppm are or have been present in the deep interior. Although models suggest that about 50 % of the incompatible species (H2O, K, Th, U) have been removed from the mantle, the amount of mantle differentiation remains uncertain because the average crustal thickness is merely constrained to within a factor of two.  相似文献   
2.
Enzian  Achim 《Space Science Reviews》1999,90(1-2):131-139
The gas flux from a volatile icy-dust mixture is computed using a comet nucleus thermal model in order to study the evolution of CO outgassing during several apparitions from long-period Comet Hale-Bopp and short-period Comet Wirtanen. The comet model assumes a spherical, porous body containing a dust component, one major ice component (H2O), and one minor ice component of higher volatility (CO). The initial chemical composition is assumed to be homogeneous. The following processes are taken into account: heat and gas diffusion inside the rotating nucleus; release of outward diffusing gas from the comet nucleus; chemical differentiation by sublimation of volatile ices in the surface layers and recondensation of gas in deeper, cooler layers. A 2-D time dependent solution is obtained through the dependence of the boundary conditions on the local solar illumination as the nucleus rotates. The model for Comet Hale-Bopp was compared with observational measurements (Biver et al., 1999). The best agreement was obtained for a model with amorphous water ice and CO, assuming that a part of the latter is trapped by the water ice, another part is condensed as an independent ice phase. The model confirms that sublimation of CO ice at large heliocentric distance produces a gradual increase in the comet's activity as it approaches the Sun. Crystallization of amorphous water ice begins at 7 AU from the Sun, but no outbursts were found. Seasonal effects and thermal inertia of the nucleus material lead to larger CO outgassing rates as the comet recedes from the Sun. In the second part of this work the model was run with the orbital parameters of Comet Wirtanen. Unlike Comet Hale-Bopp, the predicted CO outgassing from Comet Wirtanen is almost constant throughout its orbit. Such behavior can be explained by a thermally evolved and chemically differentiated comet nucleus. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
3.
涡轮级轮缘封严内非定常流场的准三维LDV测量   总被引:7,自引:1,他引:6  
研究涡轮级封严内流动和主流的相互作用、相互影响,进一步认识盘腔内燃气入侵等非定常现象,急需流场实验数据验证。针对轮缘封严内空间狭窄、光路安排困难等问题,本文发展了一种用于测量涡轮级轮缘封严内非定常流场的准三维LDV技术,即测量分两步,首先在机匣上安置二维测速系统用符合方式测出径向、切向速度及湍流度,再在轮毂内安置一维探头重复测量,从两次测量数据中计算出轴向速度;该技术借助锁相采样等技术能测出不同动静叶相对位置情况下封严及盘腔内的周期性非定常流场细节,本文给出了部分典型的动态流场测量结果。   相似文献   
4.
The evolution and escape of the martian atmosphere and the planet’s water inventory can be separated into an early and late evolutionary epoch. The first epoch started from the planet’s origin and lasted ~500 Myr. Because of the high EUV flux of the young Sun and Mars’ low gravity it was accompanied by hydrodynamic blow-off of hydrogen and strong thermal escape rates of dragged heavier species such as O and C atoms. After the main part of the protoatmosphere was lost, impact-related volatiles and mantle outgassing may have resulted in accumulation of a secondary CO2 atmosphere of a few tens to a few hundred mbar around ~4–4.3 Gyr ago. The evolution of the atmospheric surface pressure and water inventory of such a secondary atmosphere during the second epoch which lasted from the end of the Noachian until today was most likely determined by a complex interplay of various nonthermal atmospheric escape processes, impacts, carbonate precipitation, and serpentinization during the Hesperian and Amazonian epochs which led to the present day surface pressure.  相似文献   
5.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号