首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   976篇
  免费   2篇
  国内免费   1篇
航空   364篇
航天技术   367篇
综合类   2篇
航天   246篇
  2022年   5篇
  2021年   21篇
  2019年   9篇
  2018年   30篇
  2017年   22篇
  2016年   14篇
  2015年   8篇
  2014年   35篇
  2013年   47篇
  2012年   41篇
  2011年   43篇
  2010年   34篇
  2009年   60篇
  2008年   75篇
  2007年   22篇
  2006年   21篇
  2005年   31篇
  2004年   22篇
  2003年   28篇
  2002年   20篇
  2001年   36篇
  2000年   21篇
  1999年   12篇
  1998年   27篇
  1997年   11篇
  1996年   21篇
  1995年   18篇
  1994年   26篇
  1993年   11篇
  1992年   16篇
  1991年   4篇
  1989年   14篇
  1988年   7篇
  1987年   9篇
  1986年   3篇
  1985年   26篇
  1984年   18篇
  1983年   10篇
  1982年   11篇
  1981年   16篇
  1980年   5篇
  1979年   5篇
  1978年   5篇
  1976年   4篇
  1975年   6篇
  1974年   8篇
  1972年   8篇
  1968年   6篇
  1967年   5篇
  1966年   5篇
排序方式: 共有979条查询结果,搜索用时 15 毫秒
1.
It is a known fact that ionosphere is the largest and the least predictable among the sources of error limiting the reliability and accuracy of Global Navigation Satellite Systems (GNSS) and its regional augmentation systems like Satellite Based Augmentation System (SBAS) in a safety-of-life application. The situation becomes worse in the Equatorial Ionization Anomaly (EIA) region, where the daytime ionization distribution is modified by the fountain effect that develops a crest of electron density at around ±15° to ±20° of the magnetic equator and a trough at the magnetic equator during the local noon hours. Related to this phenomenon is the appearance of ionosphere irregularities and plasma bubbles after local sunset. These may degrade further the quality of service obtained from the GNSS/SBAS system of the said periods. Considering the present operational augmentation systems, the accuracy and integrity of the ionosphere corrections estimate decreases as the level of disturbances increases. In order to provide a correct ionosphere correction to the user of GNSS operating in African EIA region and meet the integrity requirements, a certified ionosphere correction model that accurately characterizes EIA gradient with the full capacity to over-bound the residual error will be needed. An irregularities detector and a decorrelation adaptor are essential in an algorithm usable for African sub-Saharan SBAS operation. The algorithm should be able to cater to the equatorial plasma vertical drifts, diurnal and seasonal variability of the ionosphere electron density and also should take into account the large spatial and temporal gradients in the region. This study presents the assessment of the ionosphere threat model with single and multi-layer algorithm, using modified planar fit and Kriging approaches.  相似文献   
2.
An empirical model of the high-latitude boundary of the outer Earth’s radiation belt (ERB) has been presented, which is based on the measurement data of electron fluxes on the polar low-orbit CORONAS-Photon, Meteor-M1, and Meteor-M2 satellites. The boundary was determined by a sharp decrease to the background level of the flux of trapped electrons with energies of 100 or 200 keV in the polar part of the profile of the outer radiation belt. A numerical algorithm has been implemented to determine the time moment, when the fastest flux changes are recorded. The primary search was carried out, first, on 30 s averaged data, then repeated on data with a higher resolution. A functional dependence was obtained in order to approximate the obtained set of intersections of the boundary by elliptical curve. The empirical model constructed using the CORONAS-Photon measurement data in the epoch of anomalously low geomagnetic activity reflects the longitude structure of the high-latitude boundary of the outer radiation belt associated with the internal Earth’s magnetic field (MF), as well as its dependence on the universal time. Based on the data of intersections of the high-latitude boundary of the outer ERB (OERB) in the epoch of 2014–2016, the latitudinal shift of the boundary to the equator dependent on geomagnetic activity has been determined, as well as the nightside shift of the boundary due to the diurnal rotation of the Earth.  相似文献   
3.
4.
5.
The planetary building blocks that formed in the terrestrial planet region were likely very dry, yet water is comparatively abundant on Earth. Here we review the various mechanisms proposed for the origin of water on the terrestrial planets. Various in-situ mechanisms have been suggested, which allow for the incorporation of water into the local planetesimals in the terrestrial planet region or into the planets themselves from local sources, although all of those mechanisms have difficulties. Comets have also been proposed as a source, although there may be problems fitting isotopic constraints, and the delivery efficiency is very low, such that it may be difficult to deliver even a single Earth ocean of water this way. The most promising route for water delivery is the accretion of material from beyond the snow line, similar to carbonaceous chondrites, that is scattered into the terrestrial planet region as the planets are growing. Two main scenarios are discussed in detail. First is the classical scenario in which the giant planets begin roughly in their final locations and the disk of planetesimals and embryos in the terrestrial planet region extends all the way into the outer asteroid belt region. Second is the Grand Tack scenario, where early inward and outward migration of the giant planets implants material from beyond the snow line into the asteroid belt and terrestrial planet region, where it can be accreted by the growing planets. Sufficient water is delivered to the terrestrial planets in both scenarios. While the Grand Tack scenario provides a better fit to most constraints, namely the small mass of Mars, planets may form too fast in the nominal case discussed here. This discrepancy may be reduced as a wider range of initial conditions is explored. Finally, we discuss several more recent models that may have important implications for water delivery to the terrestrial planets.  相似文献   
6.
7.
Indian Space Research Organization (ISRO) has developed an indigenous system named Indian Regional Navigation Satellite System (IRNSS) or NavIC (Navigation with Indian Constellation), that consists of 7 satellites and transmits navigation signal in L and S bands. ISRO, for validation of the system, has installed many IGS (IRNSS/GPS/SBAS) receivers scattered over the Indian region. Using preliminary data from two geographically widely separated stations over India, this paper presents the results on studies on parameters of IRNSS signal quality and discusses how these parameters may be used to study the ionospheric behavior over the Indian region. The results show the importance and advantages of using IRNSS data for such studies.  相似文献   
8.
Plokhikh  A. P.  Vazhenin  N. A.  Popov  G. A.  Shilov  S. O. 《Cosmic Research》2022,60(5):358-365
Cosmic Research - We have considered procedure and results of the experimental study for spectral characteristics of self emission from laboratory models of electric thrusters with closed electron...  相似文献   
9.
On 19th October 2016 Schiaparelli module of the ExoMars 2016 mission flew through the Mars atmosphere. After successful entry and descent under parachute, the module failed the last part of the descent and crashed on the Mars surface. Nevertheless the data transmitted in real-time by Schiaparelli during the entry and descent, together with the entry state vector as initial condition, have been used to reconstruct both the trajectory and the profiles of atmospheric density, pressure and temperature along the traversed path.The available data-set is only a small sub-set of the whole data acquired by Schiaparelli, with a limited data rate (8 kbps) and a large gap during the entry because of the plasma blackout on the communications.This paper presents the work done by the AMELIA (Atmospheric Mars Entry and Landing Investigations and Analysis) team in the exploitation of the available inertial and radar data. First a reference trajectory is derived by direct integration of the inertial measurements and a strategy to overcome the entry data gap is proposed. First-order covariance analysis is used to estimate the uncertainties on all the derived parameters. Then a refined trajectory is computed incorporating the measurements provided by the on-board radar altimeter.The derived trajectory is consistent with the events reported in the telemetry and also with the impact point identified on the high-resolution images of the landing site.Finally, atmospheric profiles are computed tacking into account the aerodynamic properties of the module. Derived profiles result in good agreement with both atmospheric models and available remote sensing observations.  相似文献   
10.
The simplest version of the method of detecting the single molecular scattering field based on the polarization measurements of the twilight sky background by all-sky cameras has been considered. The method can be used during transitive twilight (with solar zenith angles of 94°–98°), when effective single scattering occurs in the upper stratosphere and lower mesosphere. The long-term measurements conducted using this method in the Moscow region and Apatity make it possible to determine the temperature of these atmospheric layers and estimate the contribution and properties of multiple scattering during the transitive twilight.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号