首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   0篇
航空   13篇
航天技术   6篇
航天   6篇
  2018年   2篇
  2013年   1篇
  2011年   1篇
  2010年   1篇
  2009年   3篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
  2003年   1篇
  2000年   3篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1991年   1篇
  1990年   2篇
  1987年   1篇
  1985年   1篇
  1981年   1篇
  1966年   1篇
排序方式: 共有25条查询结果,搜索用时 31 毫秒
1.
2.
In light of the importance of the neutron contribution to the dose equivalent received by space workers in the near-Earth radiation environment, there is an increasing need for a personal dosimeter that is passive in nature and able to respond to this neutron field in real time. Recent Canadian technology has led to the development of a bubble detector, which is sensitive to neutrons, but insensitive to low linear energy transfer (LET) radiation. By changing the composition of the bubble detector fluid (or “superheat”), the detectors can be fabricated to respond to different types of radiation. This paper describes a preliminary ground-based research effort to better characterize the bubble detectors of different compositions at various charged-particle accelerator facilities, which are capable of simulating the space radiation field.  相似文献   
3.
The Radio Plasma Imager investigation on the IMAGE spacecraft   总被引:1,自引:0,他引:1  
Reinisch  B.W.  Haines  D.M.  Bibl  K.  Cheney  G.  Galkin  I.A.  Huang  X.  Myers  S.H.  Sales  G.S.  Benson  R.F.  Fung  S.F.  Green  J.L.  Boardsen  S.  Taylor  W.W.L.  Bougeret  J.-L.  Manning  R.  Meyer-Vernet  N.  Moncuquet  M.  Carpenter  D.L.  Gallagher  D.L.  Reiff  P. 《Space Science Reviews》2000,91(1-2):319-359
Radio plasma imaging uses total reflection of electromagnetic waves from plasmas whose plasma frequencies equal the radio sounding frequency and whose electron density gradients are parallel to the wave normals. The Radio Plasma Imager (RPI) has two orthogonal 500-m long dipole antennas in the spin plane for near omni-directional transmission. The third antenna is a 20-m dipole along the spin axis. Echoes from the magnetopause, plasmasphere and cusp will be received with the three orthogonal antennas, allowing the determination of their angle-of-arrival. Thus it will be possible to create image fragments of the reflecting density structures. The instrument can execute a large variety of programmable measuring options at frequencies between 3 kHz and 3 MHz. Tuning of the transmit antennas provides optimum power transfer from the 10 W transmitter to the antennas. The instrument can operate in three active sounding modes: (1) remote sounding to probe magnetospheric boundaries, (2) local (relaxation) sounding to probe the local plasma frequency and scalar magnetic field, and (3) whistler stimulation sounding. In addition, there is a passive mode to record natural emissions, and to determine the local electron density, the scalar magnetic field, and temperature by using a thermal noise spectroscopy technique.  相似文献   
4.
Green  J.L.  Benson  R.F.  Fung  S.F.  Taylor  W.W.L.  Boardsen  S.A.  Reinisch  B.W.  Haines  D.M.  Bibl  K.  Cheney  G.  Galkin  I.A.  Huang  X.  Myers  S.H.  Sales  G.S.  Bougeret  J.-L.  Manning  R.  Meyer-Vernet  N.  Moncuquet  M.  Carpenter  D.L.  Gallagher  D.L.  Reiff  P.H. 《Space Science Reviews》2000,91(1-2):361-389
The Radio Plasma Imager (RPI) will be the first-of-its kind instrument designed to use radio wave sounding techniques to perform repetitive remote sensing measurements of electron number density (N e) structures and the dynamics of the magnetosphere and plasmasphere. RPI will fly on the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) mission to be launched early in the year 2000. The design of the RPI is based on recent advances in radio transmitter and receiver design and modern digital processing techniques perfected for ground-based ionospheric sounding over the last two decades. Free-space electromagnetic waves transmitted by the RPI located in the low-density magnetospheric cavity will be reflected at distant plasma cutoffs. The location and characteristics of the plasma at those remote reflection points can then be derived from measurements of the echo amplitude, phase, delay time, frequency, polarization, Doppler shift, and echo direction. The 500 m tip-to-tip X and Y (spin plane) antennas and 20 m Z axis antenna on RPI will be used to measures echoes coming from distances of several R E. RPI will operate at frequencies between 3 kHz to 3 MHz and will provide quantitative N e values from 10–1 to 105 cm–3. Ray tracing calculations, combined with specific radio imager instrument characteristics, enables simulations of RPI measurements. These simulations have been performed throughout an IMAGE orbit and under different model magnetospheric conditions. They dramatically show that radio sounding can be used quite successfully to measure a wealth of magnetospheric phenomena such as magnetopause boundary motions and plasmapause dynamics. The radio imaging technique will provide a truly exciting opportunity to study global magnetospheric dynamics in a way that was never before possible.  相似文献   
5.
Self-organization is a property of dissipative nonlinear processes that are governed by a global driving force and a local positive feedback mechanism, which creates regular geometric and/or temporal patterns, and decreases the entropy locally, in contrast to random processes. Here we investigate for the first time a comprehensive number of (17) self-organization processes that operate in planetary physics, solar physics, stellar physics, galactic physics, and cosmology. Self-organizing systems create spontaneous “order out of randomness”, during the evolution from an initially disordered system to an ordered quasi-stationary system, mostly by quasi-periodic limit-cycle dynamics, but also by harmonic (mechanical or gyromagnetic) resonances. The global driving force can be due to gravity, electromagnetic forces, mechanical forces (e.g., rotation or differential rotation), thermal pressure, or acceleration of nonthermal particles, while the positive feedback mechanism is often an instability, such as the magneto-rotational (Balbus-Hawley) instability, the convective (Rayleigh-Bénard) instability, turbulence, vortex attraction, magnetic reconnection, plasma condensation, or a loss-cone instability. Physical models of astrophysical self-organization processes require hydrodynamic, magneto-hydrodynamic (MHD), plasma, or N-body simulations. Analytical formulations of self-organizing systems generally involve coupled differential equations with limit-cycle solutions of the Lotka-Volterra or Hopf-bifurcation type.  相似文献   
6.
The Philae lander is part of the Rosetta mission to investigate comet 67P/Churyumov-Gerasimenko. It will use a harpoon like device to anchor itself onto the surface. The anchor will perhaps reach depths of 1–2 m. In the anchor is a temperature sensor that will measure the boundary temperature as part of the MUPUS experiment. As the anchor attains thermal equilibrium with the comet ice it may be possible to extract the thermal properties of the surrounding ice, such as the thermal diffusivity, by using the temperature sensor data. The anchor is not an optimal shape for a thermal probe and application of analytical solutions to the heat equation is inappropriate. We prepare a numerical model to fit temperature sensor data and extract the thermal diffusivity. Penetrator probes mechanically compact the material immediately surrounding them as they enter the target. If the thermal properties, composition and dimensions of the penetrator are known, then the thermal properties of this pristine material may be recovered although this will be a challenging measurement. We report on investigations, using a numerical thermal model, to simulate a variety of scenarios that the anchor may encounter and how they will affect the measurement.  相似文献   
7.
Burley  R.J.  Green  J.L.  Coyle  S.E. 《Space Science Reviews》2000,91(1-2):483-496
The Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) will produce forefront science by quantifying the response of the magnetosphere to the time variable solar wind. It will acquire, for the first time, a variety of three-dimensional images of magnetospheric boundaries and plasma distributions extending from the magnetopause to the inner plasmasphere. The images will be produced on time scales needed to answer important questions about the interactions of the solar wind and the magnetosphere. The IMAGE team will provide open access to all IMAGE data. Thus there will be no proprietary rights or periods. All IMAGE data products will be archived and available to the scientific research community. The IMAGE mission will operate with a near 100% duty cycle with all instruments in their baseline operational modes. A Science and Mission Operations Control Center or SMOC has been developed at the NASA Goddard Space Flight Center (GSFC) to be the main data and command processing system for IMAGE. The IMAGE Level-0 data will be processed into Level 0.5 and Level-1 data and browse products within 24 hours after their receipt of raw data in the SMOC. These data products will be transferred to the NSSDC, for long-term archiving, and posted immediately on the world-wide-web for use by the international scientific community and the public.  相似文献   
8.
In computer codes used to estimate the aircrew radiation exposure from galactic cosmic radiation, a quiet sun model is usually assumed. A revised computer code (PCAIRE ver. 8.0f) is used to calculate the impact of noisy sun conditions on aircrew radiation exposure. The revised code incorporates the effect of solar storm activity, which can perturb the geomagnetic field lines, altering cutoff rigidities and hence the shielding capability of the Earth’s magnetic field. The effect of typical solar storm conditions on aircrew radiation exposure is shown to be minimal justifying the usual assumptions.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号