首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   0篇
航空   13篇
航天技术   8篇
航天   8篇
  2017年   1篇
  2012年   2篇
  2011年   1篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
  2003年   4篇
  2000年   3篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1985年   3篇
  1981年   1篇
  1976年   1篇
  1974年   1篇
  1970年   1篇
  1968年   1篇
  1966年   1篇
排序方式: 共有29条查询结果,搜索用时 31 毫秒
1.
The extraordinary El-Nino event of 1982–83 started to fade out in the late spring of 1983. However the sea surface temperature of the Eastern Equatorial Pacific still remained warmer than normal in the following summer. To investigate the characteristics of this late transition phase of the 1982–83 El-Nino, the GOES-West satellite data of July and August of 1983 are analyzed. The outgoing longwave radiation field and the distribution of cloudiness, which was derived by using a new threshold technique, are obtained. The longwave radiation field is compared to monthly average climatic indices commonly used at the Climatic Analysis Center. The results of cloud analysis showed some interesting features during the decaying phase of the 1982–83 El-Nino. The diurnal variation of cloudiness indicates that total cloud amounts decrease from 8 GMT to 20 GMT over most of the area. This overall study demonstrates preliminary results of the International Satellite Cloud Climatology Project of the World Climate Research Program.  相似文献   
2.
The microwave CLFM study was directed to generating 14 ?s S-band pulses of 1000 MHz bandwidth and an rms phase error of a few degrees. Over 972 MHz bandwidth, the sampled phase error relative to the reference was 7 degrees rms and 17 degrees peak, with a maximum Fourier component of 4 degrees. The FM pulse train is generated by a gated BWO driven by a stable linearizing waveform. Phase coherency during each pulse is obtained by a sampling technique, where the phase is corrected at intervals of 1/6 ?s, the RF phase having changed an integral number of cycles in each interval. Multiplication of the BWO signal by the sampling pulse train results in band-limited phase error pulses which are applied in a feedback loop. Pulse-to-pulse coherency is obtained by phase lock of the BWO starting frequency to the crystal reference. Feedback leveling holds the output constant to 0.3 dB. The basic MITRE technique was originally demonstrated at 10 MHz in 1964. Range results measured with the X-band model radar using the CLFM generator are given and confirm the phase errors of the CLFM.  相似文献   
3.
Previous studies have shown that extended length Earth-oriented tethers in the geosynchronous (GEO) region can be used to re-orbit satellites to disposal orbits. One such approach involves the extension of a GEO based tether, collection of a debris object, and retraction of the tether, which transfers the retracted configuration to a higher energy orbit for debris disposal. The re-extension of the tether after debris disposal returns the configuration to the near-GEO altitude. The practical feasibility of such a system depends on the ability to collect GEO debris objects, attach them to a deployed tether system, and retract the tethers for transfer to the disposal orbits.This study addresses the collection and delivery of debris objects to the deployed tether system in GEO. The investigation considers the number, type and the characteristics of the debris objects as well as the collection tug that can be ground controlled to detect, rendezvous and dock with the debris objects for their delivery to the tethers system.A total of more than 400 objects are in drift orbits crossing all longitudes either below or above the geostationary radius. More than 130 objects are also known to librate around the stable points in GEO with periods of libration up to five or more years. A characterization of the position and velocity of the debris objects relative to the collection tug is investigated. Typical rendezvous performance requirements for uncooperative GEO satellites are examined, and the similarities with other approaches such as the ESA's CX-OLEV commercial mission proposal to extend the life of geostationary telecommunication satellites are noted.  相似文献   
4.
de Vuyst  Tom  Vignjevic  Rade  Bourne  Neil K.  Campbell  James 《Space Debris》2000,2(4):225-232
Spall caused by hypervelocity impacts at the lower range of velocities could result in significant damage to spacecraft. A number of polycrystalline alloys, used in spacecraft manufacturing, exhibit a pronounced anisotropy in their mechanical properties. The aluminium alloy AA 7010, whose orthotropy is a consequence of the meso-scale phase distribution or grain morphology, has been chosen for this investigation. The material failure observed in plate impact was simulated using a number of spall models. The Hugoniot elastic limit and spall strength have been studied as a function of orientation, and compared to experimental results.  相似文献   
5.
The loss in output signal-to-noise ratio (SNR) due to amplitude limiting is obtained for a radar circuit consisting of a bandpass limiter, coherent demodulator, matched filter, and moving-target-indicator (MTI) filter. The circuit is used in scanning MTI radars. The tandem connection of the limiter and coherent demodulator is a model for the saturation of the intermediate-frequency (IF) demodulator of an MTI radar. Results on special functions are used to obtain simple formulas for the loss in output SNR relative to a linear IF demodulator when the input SNR is less than -15 dB and the number of hits per 3-dB beamwidth exceeds 15.  相似文献   
6.
Two special measurements of the energy exchange between earth and space were made in connection with the FGGE. A global monitoring program using wide-field-of-view and scanner detectors from NASA's NIMBUS-7 satellite successfully returned measurements during the entire FGGE. This experiment system also used a black cavity detector to measure the total energy output of the sun to very high precision. A second set of high frequency time and space estimates of the radiation budget were determined from selected geostationary satellite data. Preliminary results from both radiation budget data sets and the solar “constant” measurements will be presented.  相似文献   
7.
Induced abnormality in Mir- and Earth grown Super Dwarf wheat.   总被引:4,自引:0,他引:4  
Super-dwarf wheat grown on the Mir space station using the Svet "Greenhouse" exhibited morphological, metabolic and reproductive abnormalities compared with Earth-grown wheat. Of prominent importance were the abnormalities associated with reproductive ontogeny and the total absence of seed formation on Mir. Changes in the apical meristem associated with transition from the vegetative phase to floral initiation and development of the reproductive spike were all typical of 'Super-Dwarf' wheat up to the point of anthesis. Observation of ruptured anthers from the Mir-grown plants revealed what appeared to be normally developed pollen. These pollen gains, however, contained only one nuclei, while normal viable pollen is tri-nucleate. A potentially important difference in the flight experiment, compared with ground reference studies, was the presence of a high level of atmospheric ethylene (1,200 ppb). Ground studies conducted by exposing 'Super-Dwarf' wheat to ethylene just prior to anthesis resulted in manifestation of the same abnormalities observed in the space flight samples.  相似文献   
8.
The Spacelab-Mir-1 (SLM-1) mission is the first docking of the Space Shuttle Atlantis (STS-71) with the Orbital Station Mir in June 1995. The SLM-1 "Greenhouse-2" experiment will utilize the Russian-Bulgarian-developed plant growth unit (Svet). "Greenhouse-2" will include two plantings (1) designed to test the capability of Svet to grow a crop of Superdwarf wheat from seed to seed, and (2) to provide green plant material for post-flight analysis. Protocols, procedures, and equipment for the experiment have been developed by the US-Russian science team. "Greenhouse-2" will also provide the first orbital test of a new Svet Instrumentation System (SIS) developed by Utah State University to provide near real time data on plant environmental parameters and gas-exchange rates. SIS supplements the Svet control and monitoring system with additional sensors for substrate moisture, air temperature, IR leaf temperature, light, oxygen, pressure, humidity, and carbon-dioxide. SIS provides the capability to monitor canopy transpiration and net assimilation of the plants growing in each vegetation unit (root zone) by enclosing the canopy in separate, retractable, ventilated leaf chambers. Six times during the seed-to-seed experiment, plant samples will be collected, leaf area measured, and plant parts fixed and/or dried for ground analysis. A second planting initiated 30 days before the arrival of a U.S. Shuttle [originally planned to be STS-71] is designed to provide green material at the vegetative development stage for ground analysis. [As this paper is being edited, the experiment has been delayed until after the arrival of STS-71.]  相似文献   
9.
Jurewicz  A.J.G.  Burnett  D.S.  Wiens  R.C.  Friedmann  T.A.  Hays  C.C.  Hohlfelder  R.J.  Nishiizumi  K.  Stone  J.A.  Woolum  D.S.  Becker  R.  Butterworth  A.L.  Campbell  A.J.  Ebihara  M.  Franchi  I.A.  Heber  V.  Hohenberg  C.M.  Humayun  M.  McKeegan  K.D.  McNamara  K.  Meshik  A.  Pepin  R.O.  Schlutter  D.  Wieler  R. 《Space Science Reviews》2003,105(3-4):535-560
Genesis (NASA Discovery Mission #5) is a sample return mission. Collectors comprised of ultra-high purity materials will be exposed to the solar wind and then returned to Earth for laboratory analysis. There is a suite of fifteen types of ultra-pure materials distributed among several locations. Most of the materials are mounted on deployable panels (‘collector arrays’), with some as targets in the focal spot of an electrostatic mirror (the ‘concentrator’). Other materials are strategically placed on the spacecraft as additional targets of opportunity to maximize the area for solar-wind collection. Most of the collection area consists of hexagonal collectors in the arrays; approximately half are silicon, the rest are for solar-wind components not retained and/or not easily measured in silicon. There are a variety of materials both in collector arrays and elsewhere targeted for the analyses of specific solar-wind components. Engineering and science factors drove the selection process. Engineering required testing of physical properties such as the ability to withstand shaking on launch and thermal cycling during deployment. Science constraints included bulk purity, surface and interface cleanliness, retentiveness with respect to individual solar-wind components, and availability. A detailed report of material parameters planned as a resource for choosing materials for study will be published on a Genesis website, and will be updated as additional information is obtained. Some material is already linked to the Genesis plasma data website (genesis.lanl.gov). Genesis should provide a reservoir of materials for allocation to the scientific community throughout the 21st Century. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
10.
The gravitation and celestial mechanics investigations during the cruise phase and Orbiter phase of the Galileo mission depend on Doppler and ranging measurements generated by the Deep Space Network (DSN) at its three spacecraft tracking sites in California, Australia, and Spain. Other investigations which also rely on DSN data, and which like ours fall under the general discipline of spacecraft radio science, are described in a companion paper by Howard et al. (1992). We group our investigations into four broad categories as follows: (1) the determination of the gravity fields of Jupiter and its four major satellites during the orbital tour, (2) a search for gravitational radiation as evidenced by perturbations to the coherent Doppler link between the spacecraft and Earth, (3) the mathematical modeling, and by implication tests, of general relativistic effects on the Doppler and ranging data during both cruise and orbiter phases, and (4) an improvement in the ephemeris of Jupiter by means of spacecraft ranging during the Orbiter phase. The gravity fields are accessible because of their effects on the spacecraft motion, determined primarily from the Doppler data. For the Galilean satellites we will determine second degree and order gravity harmonics that will yield new information on the central condensation and likely composition of material within these giant satellites (Hubbard and Anderson, 1978). The search for gravitational radiation is being conducted in cruise for periods of 40 days centered around solar opposition. During these times the radio link is least affected by scintillations introduced by solar plasma. Our sensitivity to the amplitude of sinusoidal signals approaches 10-15 in a band of gravitational frequencies between 10-4 and 10-3 Hz, by far the best sensitivity obtained in this band to date. In addition to the primary objectives of our investigations, we discuss two secondary objectives: the determination of a range fix on Venus during the flyby on 10 February, 1990, and the determination of the Earth's mass (GM) from the two Earth gravity assists, EGA1 in December 1990 and EGA2 in December 1992.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号