首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
航空   1篇
航天技术   4篇
  2010年   1篇
  2008年   2篇
  2005年   1篇
  2004年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
The Scientific Balloon Center of ISAS/JAXA has carried out two balloon campaigns at Sanriku, Iwate, Japan every year. Ten to twelve balloon vehicles are launched annually for scientific and engineering experiments. Since 2005, a Brazilian balloon campaign has also been conducted in cooperation with INPE. In the 2006 Brazilian campaign, large and heavy payloads up to 1500 kg for astronomy will be launched. New generation balloons, such as super-pressure balloons and high-altitude balloons with ultra-thin films, are being developed. The current status and prospect of the Japanese scientific ballooning are discussed.  相似文献   
2.
In Japan, Communications Research Laboratory engages in operational space environment information services as National Forecasting Center and Regional Warning Center of ISES. Data from local observations and data collected via internet from domestic and foreign institutes are used for the daily operational forecast. Fundamental research on space weather issues has been carried out at several institutes and universities, including STE Laboratory and NASDA. In this presentation, an overview of current space weather forecast operations and a system for information outreach in Japan will be presented. Current and future observation programs from ground-base and space will be also briefly reviewed.  相似文献   
3.
Several ground-based observations of the Venus 1.27-μm O2 airglow were carried out from 2002 to 2005. Spectral image cubes were taken with the Okayama Astrophysical Observatory/infrared imaging spectrometer (superOASIS), the Gunma Astronomical Observatory/Cassegrain Near-Infrared Camera and NASA’s Infrared Telescope Facility/cryogenic echelle spectrograph (CSHELL). The brightest airglow features were found at around the anti-solar point, which is in agreement with previous studies. We derived the rotational temperature distributions on the nightside hemisphere from observed airglow spectra. The temperature shows a weak positive correlation with the airglow intensity. The result indicates the bright region is heated chemically and/or dynamically, and supports the existing scenario for the Venus O2 airglow. That is, the airglow is excited by the descending oxygen transported from the dayside.  相似文献   
4.
Extreme and far ultraviolet imaging spectrometers are proposed for the low-altitude orbiter of the BepiColombo mission. The UV instrument, consisting of the two spectrometers with common electronics, aims at measuring (1) emission lines from molecules, atoms and ions present in the Mercury’s tenuous atmosphere and (2) the reflectance spectrum of Mercury’s surface. The instrument pursues a complete coverage in UV spectroscopy. The extreme UV spectrometer covers the spectral range of 30–150 nm with the field of view of 5.0°, and the spectrum from 130 to 430 nm is obtained by the far UV spectrometer. The extreme UV spectrometer employs multi-layer coating technology to enhance its sensitivity at particular emission lines. This technology enables us to identify small ionospheric signatures such as He II (30.4 nm) and Na II (37.2 nm), which could not be detected with conventional optics.  相似文献   
5.
MAP-PACE (MAgnetic field and Plasma experiment—Plasma energy Angle and Composition Experiment) on SELENE (Kaguya) has completed its ~1.5-year observation of low-energy charged particles around the Moon. MAP-PACE consists of 4 sensors: ESA (Electron Spectrum Analyzer)-S1, ESA-S2, IMA (Ion Mass Analyzer), and IEA (Ion Energy Analyzer). ESA-S1 and S2 measured the distribution function of low-energy electrons in the energy range 6 eV–9 keV and 9 eV–16 keV, respectively. IMA and IEA measured the distribution function of low-energy ions in the energy ranges 7 eV/q–28 keV/q and 7 eV/q–29 keV/q. All the sensors performed quite well as expected from the laboratory experiment carried out before launch. Since each sensor has a hemispherical field of view, two electron sensors and two ion sensors installed on the spacecraft panels opposite each other could cover the full 3-dimensional phase space of low-energy electrons and ions. One of the ion sensors IMA is an energy mass spectrometer. IMA measured mass-specific ion energy spectra that have never before been obtained at a 100 km altitude polar orbit around the Moon. The newly observed data show characteristic ion populations around the Moon. Besides the solar wind, MAP-PACE-IMA found four clearly distinguishable ion populations on the dayside of the Moon: (1) Solar wind protons backscattered at the lunar surface, (2) Solar wind protons reflected by magnetic anomalies on the lunar surface, (3) Reflected/backscattered protons picked-up by the solar wind, and (4) Ions originating from the lunar surface/lunar exosphere.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号