首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
航空   3篇
航天技术   6篇
航天   2篇
  2019年   1篇
  2014年   1篇
  2011年   1篇
  2010年   3篇
  2002年   1篇
  1999年   1篇
  1985年   2篇
  1982年   1篇
排序方式: 共有11条查询结果,搜索用时 437 毫秒
1.
A new MPD (magnetoplasmadynamic) arcjet system was developed and tested to demonstrate its technological readiness for flight model design. The MPD arcjet, of quasisteady type, was repetitively operated. In the endurance test, more than 105 shots were cleared in continuous operation. Some components cleared more than 106 shots. Cathode erosion was markedly reduced through the use of newly developed material. Thermal data were obtained which define the thermal interface between the spacecraft and the MPD arcjet system. Waste heat from the electrodes was found to be 20–30% of the input power and to vary with repetition frequency. No technological difficulties are foreseen for further continuation of repetitive operation.  相似文献   
2.
One potentially attractive propulsion concept offering significant payload gains for orbit transfer from LEO to higher orbits, station keeping and attitude control of spacecraft is thermal propulsion using light gas (typically hydrogen) as propellant and various kinds of heat energy. Solar Thermal Propulsion (STP) is a typical thermal propulsion with high Isp (500 – 1,000 s) in an appropriate thrust magnitude range and provides possibly much less space pollution than conventional chemical propulsion.

This paper presents the test results of a 30 mm dia. (medium-sized) windowless type of single crystal Mo thruster for orbit transfer of 50 kg class microsatellites. The cavity dia. is 20 mm, double the size of the previous model, and can apply to a primary solar reflector of up to 3.5 m dia., which is the maximum size containable in the H-II rocket fairing without segmentation. The performed mission analyses indicate that this size of STP is suitable to orbit transfer of 50 kg class microsatellites, such as LEO to GEO, or only multiple apogee kicks from GTO to GEO or deep space missions.  相似文献   

3.
The magnetic field around the Moon has been successfully observed at a nominal altitude of ~100 km by the lunar magnetometer (LMAG) on the SELENE (Kaguya) spacecraft in a polar orbit since October 29, 2007. The LMAG mission has three main objectives: (1) mapping the magnetic anomaly of the Moon, (2) measuring the electromagnetic and plasma environment around the Moon and (3) estimating the electrical conductivity structure of the Moon. Here we review the instrumentation and calibration of LMAG and report the initial global mapping of the lunar magnetic anomaly at the nominal altitude. We have applied a new de-trending technique of the Bayesian procedure to multiple-orbit datasets observed in the tail lobe and in the lunar wake. Based on the nominal observation of 14 months, global maps of lunar magnetic anomalies are obtained with 95% coverage of the lunar surface. After altitude normalization and interpolation of the magnetic anomaly field by an inverse boundary value problem, we obtained full-coverage maps of the vector magnetic field at 100 km altitude and the radial component distribution on the surface. Relatively strong anomalies are identified in several basin-antipode regions and several near-basin and near-crater regions, while the youngest basin on the Moon, the Orientale basin, has no magnetic anomaly. These features well agree with characteristics of previous maps based on the Lunar Prospector observation. Relatively weak anomalies are distributed over most of the lunar surface. The surface radial-component distribution estimated from the inverse boundary value problem in the present study shows a good correlation with the radial component distribution at 30 km altitude by Lunar Prospector. Thus these weak anomalies over the lunar surface are not artifacts but likely to be originated from the lunar crustal magnetism, suggesting possible existence of an ancient global magnetic field such as a dynamo field of the early Moon. The possibility of the early lunar dynamo and the mechanism of magnetization acquisition will be investigated by a further study using the low-altitude data of the magnetic field by Kaguya.  相似文献   
4.
Land subsidence is a critical issue that large cities located in coastal areas, such as Semarang, Indonesia, must address. The monitoring of land subsidence is vital for predicting and mitigating the disasters that such subsidence may cause. Therefore, an economical and effective monitoring method, which can continuously provide accurate measurements over extensive areas, is highly required. Differential Interferometry Synthetic Aperture Radar (DInSAR) has the potential to be a powerful technique that can meet the above demands. Actually, DInSAR has been applied to monitor the subsidence in Semarang, but it was for a limited period before 2012.In order to clarify the transition of the long-term subsidence behavior in Semarang, the Small Baseline Subset (SBAS) method, which is one type of time-series DInSAR, is employed in this research. The sets of data of Envisat-ASAR (2003–2007), ALOS-PALSAR (2007–2011), and Sentinel-1A (2015–2017) are employed for the analyses. Then, the validity of the SBAS results is discussed from the viewpoints of both spatial distribution and temporal transition using GPS displacement measurement results and the geological conditions of the ground.On the other hand, as the lifespan of SAR satellites is commonly designed to be around 5–7?years, an appropriate method, which can connect the subsidence provided independently by the unlinked time-series data sets of the three different SAR satellite data, is required. This study uses the Hyperbolic Method (HM) to connect the above unlinked SBAS results. The HM is often used to fit the monitored subsidence in practice as a geotechnical engineering tool. Using this method, 14?years of the temporal behavior of the subsidence in Semarang is evaluated.It is found that the transition of the subsidence is different depending on the location, and that the subsidence rate is still increasing in the north and northeast parts of the coastal area. This study shows that SBAS DInSAR can be a useful tool for long-term continuous subsidence monitoring.  相似文献   
5.
In the Earth’s magnetotail, Japanese Moon orbiter Kaguya repeatedly encountered the plasmoid or plasma sheet. The encounters were characterized by the low energy ion signatures including lobe cold ions, cold ion acceleration in the plasma sheet-lobe boundaries, and hot plasma sheet ions or fast flowing ions associated with plasmoids. Different from the previous observations made in the magnetotail by the GEOTAIL spacecraft, the ions were affected by the existence of the Moon. On the dayside of the Moon, tailward flowing cold ions and their acceleration were observed. However, on the night side, tailward flowing cold ions could not be observed since the Moon blocked them. In stead, ion acceleration by the spacecraft potential and the electron beam accelerated by the potential difference between lunar surface and spacecraft were simultaneously observed. These electron and ion data enabled us to determine the night side lunar surface potential and spacecraft potential only from the observed data for the first time.  相似文献   
6.
The Hadamard X-ray Spectro-telescope consists of a flat Bragg crystal, an Hadamard mask and an imaging proportional counter. We have achieved α??α≈50, which is limited by the position resolution of the detector. This telescope is useful to observe the spectral structure of extended X-ray sources. We introduce a new type of read out method (Grouped Wire Method) for the position sensitive proportional counter in order to get high energy and position resolutions for the Hadamard Spectro-telescope. In principle, this method is capable of obtaining the desired linearity over the whole area of the detector.  相似文献   
7.
To achieve the scientific objectives related to the lunar magnetic field measurements in a polar orbit at an altitude of 100 km, strict electromagnetic compatibility (EMC) requirements were applied to all components and subsystems of the SELENE (Kaguya) spacecraft. The magnetic cleanliness program was defined as one of the EMC control procedures, and magnetic tests were carried out for most of the engineering and flight models. The EMC performance of all components was systematically controlled and examined through a series of EMC tests. As a result, the Kaguya spacecraft was made to be very clean, magnetically. Hence reliable scientific data related to the magnetic field around the Moon were obtained by the LMAG (Lunar MAGnetometer) and the PACE (Plasma energy Angle and Composition Experiment) onboard the Kaguya spacecraft. These data have been available for lunar science use since November 2009.  相似文献   
8.
Time profiles of some physical values in earthward fast flows in the plasma sheet are observed at three dimensionally different positions by employing virtual satellites located in the three-dimensional magnetohydrodynamic simulation domain, and these simulations are done on the basis of the spontaneous fast reconnection model. In the spontaneous fast reconnection evolution, the width of the flow channel is narrow in the dawn-dusk direction, and it does not spread until the plasma collides with the magnetic loop. The enhancements in Bz and Vx are larger at the center of the fast flow channel than those at its dawn and dusk edges, reflecting the differences in the reconnection rate in the diffusion region. The enhancement in Vx is shorter near the plasma sheet boundary layer than that near the neutral sheet, reflecting the changes in the thickness of the flow channel.  相似文献   
9.
Solar-B     
Following the successful Yohkoh satellite which is continuously operating since August 1991, the solar physics community in Japan is now preparing for a Japan's next solar physics mission, Solar-B, whose primary objective is to study the connection of the dynamics and heating in the solar corona with the magnetic field at the solar surface. Solar-B will carry a medium-sized optical telescope with capability of measuring vector magnetic fields at the solar surface, together with two X-ray/EUV imaging telescopes capable of measuring the dynamics and physical conditions of hot plasma in the solar corona. These telescopes are prepared under the international collaborations with U.S.A. (NASA) and U.K. (PPARC). ISAS schedules to launch Solar-B as its 22nd science satellite in summer 2005. The Solar-B program is now in the proto-model manifacture/test phase and the baseline design of the satellite as well as the three telescopes is defined.  相似文献   
10.
The main molecular processes to produce the hydrogen comae of comets are now well known: Water, the main constituent of cometary atmospheres, is photodissociated by the solar ultraviolet radiation to form the high (20 km s−1) and low (8 km s−1) velocity components of the atomic hydrogen. The hydrogen clouds of various fresh comets have been observed in 1216Å by a number of spacecrafts. Ultraviolet observations of short period comets are, however, rather rare. Consequently Comet P/Halley in this apparition is a good object to obtain new physics of the hydrogen coma. Strong breathing of the hydrogen coma of this comet found by “Suisei” provides just such an example. The rotational period of Comet Halley's nucleus, its activity in the form of outbursts alone, and the position of jet sources etc. are determined from the breathing phenomena. Atomic hydrogen from organic compounds with a velocity of 11 km s−1 play an important role in that analysis. The time variations of the water production rate of Comet Halley during this apparition observed by various spacecrafts appear to be in agreement with each other and are about 1.5–2 times larger than the standard model. The difficulty of the calibration problem was emphasized.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号