首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
航空   6篇
航天技术   2篇
航天   8篇
  2021年   1篇
  2017年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2005年   2篇
  2004年   1篇
  1995年   1篇
  1977年   1篇
排序方式: 共有16条查询结果,搜索用时 218 毫秒
1.
As the USA, Europe and other nations embark on a new voyage of exploration to the Moon, Mars and beyond, they should lay the foundations and establish precedents that invite a host of participants and followers. We argue that international cooperation, driven by foreign-policy and cost-sharing considerations, has taken a prominent role but must be pragmatically and flexibly balanced with economic and strategic self-interest. Since exploration visions are likely to differ, the steps each country will pursue, the funding provided, and schedules followed will also differ. To support an enduring exploration vision, it will be important to remain flexible to changing priorities and amenable to the inclusion of new, non-traditional participants. Open-systems principles and metaprinciples should be employed at all levels—hardware, software, programmatic, political and cultural. Equally important, national leadership and decision makers should be mindful of the potential pitfalls that might undermine the venture. While the new vision inspires us all, it will take creativity, resourcefulness, hard work and cooperation to succeed.  相似文献   
2.
New Horizons: Anticipated Scientific Investigations at the Pluto System   总被引:1,自引:0,他引:1  
The New Horizons spacecraft will achieve a wide range of measurement objectives at the Pluto system, including color and panchromatic maps, 1.25–2.50 micron spectral images for studying surface compositions, and measurements of Pluto’s atmosphere (temperatures, composition, hazes, and the escape rate). Additional measurement objectives include topography, surface temperatures, and the solar wind interaction. The fulfillment of these measurement objectives will broaden our understanding of the Pluto system, such as the origin of the Pluto system, the processes operating on the surface, the volatile transport cycle, and the energetics and chemistry of the atmosphere. The mission, payload, and strawman observing sequences have been designed to achieve the NASA-specified measurement objectives and maximize the science return. The planned observations at the Pluto system will extend our knowledge of other objects formed by giant impact (such as the Earth–moon), other objects formed in the outer solar system (such as comets and other icy dwarf planets), other bodies with surfaces in vapor-pressure equilibrium (such as Triton and Mars), and other bodies with N2:CH4 atmospheres (such as Titan, Triton, and the early Earth).  相似文献   
3.
Although faced with the new global challenges of terrorism and peer competition, the USA has been slow to adapt its cold war forces, and newer ‘warfighter’ strategy to meet them. Cyberspace and outer space offer the means to do this, via ‘responsive’ microsatellites and low-cost launchers, and broadband internet information and education services. The US military leadership is, however, not well enough versed in these technologies, with senior personnel largely lacking a space or technical background and having little appetite for change. If the USA is successfully to meet current challenges, it must first create a leadership that is technologically capable and philosophically attuned to change.  相似文献   
4.
The ultraviolet spectrograph instrument on the Juno mission (Juno-UVS) is a long-slit imaging spectrograph designed to observe and characterize Jupiter’s far-ultraviolet (FUV) auroral emissions. These observations will be coordinated and correlated with those from Juno’s other remote sensing instruments and used to place in situ measurements made by Juno’s particles and fields instruments into a global context, relating the local data with events occurring in more distant regions of Jupiter’s magnetosphere. Juno-UVS is based on a series of imaging FUV spectrographs currently in flight—the two Alice instruments on the Rosetta and New Horizons missions, and the Lyman Alpha Mapping Project on the Lunar Reconnaissance Orbiter mission. However, Juno-UVS has several important modifications, including (1) a scan mirror (for targeting specific auroral features), (2) extensive shielding (for mitigation of electronics and data quality degradation by energetic particles), and (3) a cross delay line microchannel plate detector (for both faster photon counting and improved spatial resolution). This paper describes the science objectives, design, and initial performance of the Juno-UVS.  相似文献   
5.
There is increasingly broad concern in the USA today about the quality, vibrancy and appeal of science and technical education in general and space education in particular. There needs to be a robust link between the educational community (i.e. the primary and secondary schools as well as colleges and universities) and a well-defined space research and exploration agenda that is strongly supported by the space industry, NASA and other relevant US governmental agencies. Without such a renewal of mission and new goals it will be difficult to re-invigorate and expand quality space education programs. A workshop was therefore convened in 2003 to analyze the problem, discuss new initiatives, organize a survey inviting suggestions from a range of relevant players and draw conclusions on what the USA needs to do to improve space education in the 21st century. Although the focus of this workshop was on space education in the USA the international dimensions of this problem were also addressed and the firm conclusion was reached that similar issues and concerns apply in Europe, Canada, Japan and other spacefaring nations. This article is an edited version of a White Paper subsequently produced to highlight the problem, summarize the proceedings of the workshop and present the results of the survey. Greater clarity in the definition of national space goals, the upgrading of teachers’ skills and an increase in technical scholarships are among the steps recommended.  相似文献   
6.
7.
The Plasma Wave Instrument on the Polar spacecraft is designed to provide measurements of plasma waves in the Earth's polar regions over the frequency range from 0.1 Hz to 800 kHz. Three orthogonal electric dipole antennas are used to detect electric fields, two in the spin plane and one aligned along the spacecraft spin axis. A magnetic loop antenna and a triaxial magnetic search coil antenna are used to detect magnetic fields. Signals from these antennas are processed by five receiver systems: a wideband receiver, a high-frequency waveform receiver, a low-frequency waveform receiver, two multichannel analyzers; and a pair of sweep frequency receivers. Compared to previous plasma wave instruments, the Polar plasma wave instrument has several new capabilities. These include (1) an expanded frequency range to improve coverage of both low- and high-frequency wave phenomena, (2) the ability to simultaneously capture signals from six orthogonal electric and magnetic field sensors, and (3) a digital wideband receiver with up to 8-bit resolution and sample rates as high as 249k samples s–1.  相似文献   
8.
9.
A novel concept is presented in this paper for a human mission to the lunar L2 (Lagrange) point that would be a proving ground for future exploration missions to deep space while also overseeing scientifically important investigations. In an L2 halo orbit above the lunar farside, the astronauts aboard the Orion Crew Vehicle would travel 15% farther from Earth than did the Apollo astronauts and spend almost three times longer in deep space. Such a mission would serve as a first step beyond low Earth orbit and prove out operational spaceflight capabilities such as life support, communication, high speed re-entry, and radiation protection prior to more difficult human exploration missions. On this proposed mission, the crew would teleoperate landers/rovers on the unexplored lunar farside, which would obtain samples from the geologically interesting farside and deploy a low radio frequency telescope. Sampling the South Pole-Aitken basin, one of the oldest impact basins in the solar system, is a key science objective of the 2011 Planetary Science Decadal Survey. Observations at low radio frequencies to track the effects of the Universe’s first stars/galaxies on the intergalactic medium are a priority of the 2010 Astronomy and Astrophysics Decadal Survey. Such telerobotic oversight would also demonstrate capability for human and robotic cooperation on future, more complex deep space missions such as exploring Mars.  相似文献   
10.
This paper surveys recent and current advancements of laser-induced ablation technology for space-based applications and discusses ways of bringing such applications to fruition. Laser ablation is achieved by illuminating a given material with a laser light source. The high surface power densities provided by the laser enable the illuminated material to sublimate and ablate. Possible applications include the deflection of Near Earth Objects – asteroids and comets – from an Earth-impacting event, the vaporisation of space structures and debris, the mineral and material extraction of asteroids and/or as an energy source for future propulsion systems. This paper will discuss each application and the technological advancements that are required to make laser-induced ablation a practical process for use within the space arena. Particular improvements include the efficiency of high power lasers, the collimation of the laser beam (including beam quality) and the power conversion process. These key technological improvements are seen as strategic and merit greater political and commercial support.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号