首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55篇
  免费   0篇
航空   30篇
航天技术   11篇
航天   14篇
  2021年   2篇
  2019年   1篇
  2018年   2篇
  2017年   3篇
  2015年   4篇
  2013年   4篇
  2011年   5篇
  2009年   5篇
  2008年   2篇
  2006年   3篇
  2005年   2篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  2000年   4篇
  1999年   3篇
  1998年   1篇
  1992年   1篇
  1989年   2篇
  1985年   1篇
  1983年   2篇
  1980年   1篇
  1968年   1篇
排序方式: 共有55条查询结果,搜索用时 15 毫秒
1.
We present results on the X-ray source populations of nearby star-forming galaxies based on Chandra observations. First we discuss the monitoring campaigns on the Antennae and M82 galaxies. In both cases we find that the majority of the X-ray sources exhibit intensity and/or spectral variability. However, despite of this variability, we do not find any statistically significant variations of their X-ray luminosity functions (XLFs). We also find that the majority of the X-ray sources are associated with star-forming regions, although we do not always identify optical counterparts to the X-ray sources. Especially in the case of M82 we find that the most luminous sources are clustered in the central region of the galaxy. Finally, we present the first results from a study of a sample of nearby star-forming galaxies which form a starburst age sequence: although their XLFs to first order are represented by power-laws with consistent slopes, there is an indication for small variations, suggesting a change of their X-ray binary populations.  相似文献   
2.
The Cassini-Huygens Cosmic Dust Analyzer (CDA) is intended to provide direct observations of dust grains with masses between 10−19 and 10−9 kg in interplanetary space and in the jovian and saturnian systems, to investigate their physical, chemical and dynamical properties as functions of the distances to the Sun, to Jupiter and to Saturn and its satellites and rings, to study their interaction with the saturnian rings, satellites and magnetosphere. Chemical composition of interplanetary meteoroids will be compared with asteroidal and cometary dust, as well as with Saturn dust, ejecta from rings and satellites. Ring and satellites phenomena which might be effects of meteoroid impacts will be compared with the interplanetary dust environment. Electrical charges of particulate matter in the magnetosphere and its consequences will be studied, e.g. the effects of the ambient plasma and the magnetic field on the trajectories of dust particles as well as fragmentation of particles due to electrostatic disruption.The investigation will be performed with an instrument that measures the mass, composition, electric charge, speed, and flight direction of individual dust particles. It is a highly reliable and versatile instrument with a mass sensitivity 106 times higher than that of the Pioneer 10 and 11 dust detectors which measured dust in the saturnian system. The Cosmic Dust Analyzer has significant inheritance from former space instrumentation developed for the VEGA, Giotto, Galileo, and Ulysses missions. It will reliably measure impacts from as low as 1 impact per month up to 104 impacts per second. The instrument weighs 17 kg and consumes 12 W, the integrated time-of-flight mass spectrometer has a mass resolution of up to 50. The nominal data transmission rate is 524 bits/s and varies between 50 and 4192 bps.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
3.
4.
To reproduce the weak magnetic field on the polar caps of the Sun observed during the declining phase of cycle 23 poses a challenge to surface flux transport models since this cycle has not been particularly weak. We use a well-calibrated model to evaluate the parameter changes required to obtain simulated polar fields and open flux that are consistent with the observations. We find that the low polar field of cycle 23 could be reproduced by an increase of the meridional flow by 55% in the last cycle. Alternatively, a decrease of the mean tilt angle of sunspot groups by 28% would also lead to a similarly low polar field, but cause a delay of the polar field reversals by 1.5 years in comparison to the observations.  相似文献   
5.
Based on general relativity, the article reviews gravitomagnetism in physics and astrophysics. Emphasis is put on observational effects. Accelerated reference frames in flat spacetime are discussed to illuminate the gravitomagnetic field. Compact insight into the dynamics of gravitationally interacting non-spinning and spinning objects is achieved by employing the Hamilton formalism.  相似文献   
6.
In an environment of declining financial budgets for space projects, new approaches - such as Design-To-Cost - are being implemented to improve today's satellite design processes. Using an example of a current mission (the power subsystem of the Solar Probe spacecraft) under study at NASA's Jet Propulsion Laboratory, the main part of the paper discusses an Integrated System Model (structured into a performance model, a cost model, and an effectiveness model) that is part of a model-based design process used to perform cost-effectiveness trades. A simulation tool is used during the first step to size the components of the power subsystem, and then simulate its performance during operation. The determined dimensions are transferred into an EXCELTM-spreadsheet and linked to the components' costs. With a cost accounting tool that combines cost estimating relationships with the Work Breakdown Structure of the power subsystem, the life-cycle cost of each alternative design concept is computed. To determine the cost-risk of the different design alternatives for each component, cost probability distributions are introduced. By performing Monte-Carlo simulations, cost sensitivities are revealed. In the next step of the trade study process, the effectiveness of the alternatives is analyzed. Having determined cost and effectiveness, estimates can be made for where the different alternatives lie in the design space. The last part of the paper identifies the main drivers for the spacecraft's performance and cost. Finally it is shown how the mission design benefited from the Integrated System Model and from the application of Design-To-Cost.  相似文献   
7.
8.
More than half a century after the discovery of Pi2 pulsations, Pi2 research is still vigorous and evolving. Especially in the last decade, new results have provided supporting evidence for some Pi2 models, challenged earlier interpretations, and led to entirely new models. We have gone beyond the inner magnetosphere and have explored the outer magnetosphere, where Pi2 pulsations have been observed in unexpected places. The new Pi2 models cover virtually all magnetotail regions and their coupling, from the reconnection site via the lobes and plasma sheet to the ionosphere. In addition to understanding the Pi2 phenomenon in itself, it has also been important to study Pi2 pulsations in their role as transient manifestations of the coupling between the magnetosphere and the ionosphere. The transient Pi2 is an integral part of the substorm phenomenon, especially during substorm onset. Key questions about the workings of magnetospheric substorms are still awaiting answers, and research on Pi2 pulsations can help with those answers. Furthermore, the role of Pi2 pulsations in association with other dynamic magnetospheric modes has been explored in the last decade. Thus, the application of Pi2 research has expanded over the years, assuring that Pi2 research will remain active in this decade and beyond. Here we review recent advances, which have given us a new understanding of Pi2 pulsations generated at various places in the magnetosphere during different magnetospheric modes. We review seven Pi2 models found in the literature and show how they are supported by observations from spacecraft and ground observatories as well as numerical simulations. The models have different degrees of maturity; while some enjoy wide acceptance, others are still speculative.  相似文献   
9.
We have conducted a feasibility study for the geostationary monitoring of the diurnal variation of tropospheric NO2 over Tokyo. Using NO2 fields from a chemical transport model, synthetic spectra were created by a radiative transfer model, SCIATRAN, for summer and winter cases. We then performed a Differential Optical Absorption Spectroscopy (DOAS) analysis to retrieve NO2 slant column densities (SCDs), and after converting SCDs into vertical column densities (VCDs), we estimated the precision of the retrieved VCDs. The simulation showed that signal-to-noise ratio (SNR) ? 500 is needed to detect the diurnal variation and that SNR ? 1000 is needed to observe the local minimum occurring in the early afternoon (LT13–14) in summer. In winter, the detection of the diurnal variation during LT08–15 needs SNR ? 500, and SNR ? 1000 is needed if early morning (LT07) and early evening (LT16) are included. The currently discussed sensor specification for the Japanese geostationary satellite project, GMAP-Asia, which has a horizontal resolution of 10 km and a temporal resolution of 1hr, has demonstrated the performance of a precision of several percent, which is approximately corresponding to SNR = 1000–2000 during daytime and SNR ? 500 in the morning and evening. We also discuss possible biases caused by the temperature dependence of the absorption cross section utilized in the DOAS retrieval, and the effect of uncertainties of surface albedo and clouds on the estimation of precisions.  相似文献   
10.
Plans for interplanetary manned space missions imply significant risks arising from human's exposure to the hostile space environment. Thus the design of reliable protection systems against the ionizing cosmic radiation becomes one of the most relevant issues. In this paper the composition and magnitude of the atmospheric radiation on the planetary surface and for typical interplanetary transfer configurations have been analyzed. The investigation based on prior NASA and ESA mission results, using a manned mission to planet Mars as a case study. According to this, the time-dependent character of the consistency of cosmic radiation has been taken into account, which is justified by the interdependence of the radiation magnitude to the solar cycle. With regard to this paper it implies even solar particle events. The results have been compared to the protective character of different materials potentially usable as a habitat's structural shell and for interplanetary spacecrafts. The investigation aimed on particle energy degradation rates and reduction of secondary particle production. In this regard the physical process of absorbing effectiveness against particle radiation has been examined by analytical calculation and given scientific results, depending on thickness and molecular composition of the materials. The most suitable materials have been used for shield design proposals using different configurations, evaluating the use of aluminium, water tanks and polyethylene bricks.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号