首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
  国内免费   1篇
航空   12篇
航天   1篇
  2015年   1篇
  2013年   1篇
  2008年   2篇
  2006年   1篇
  2003年   1篇
  2001年   2篇
  2000年   1篇
  1995年   2篇
  1985年   1篇
  1982年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
彭世镠  高智 《航空学报》1995,16(5):587-591
证明了在圆柱绕流分离点的邻域上 ,N-S方程和高智的简化 N-S方程是正则的 ,即存在级数解 ;而 Davis和 ГКП的简化 N-S与经典的边界层方程一样存在 Goldstein奇性  相似文献   
2.
首先证实二维斜入射驻点流为干扰剪切流(ISF),导出该ISF控制方程组,并求得该斜入射驻点ISF的解析解,它与完全NS方程组得到的精确解完全一致,对此作了相关物理分析,为CFD可信度验证的精确解比较方法提供了一个典型的局部区域流动模型,并为该流动模型的数值求解提供了有效的途径.  相似文献   
3.
本文针对具有二次涡复杂分离再附现象的激波边界层干扰流动,数值地考察了扩散抛物化Navier-Stokes(DPNS)方程组的适用情况。壁面摩阻和压力、主涡和二次涡的涡高和涡长、分离再附位置以及流线图等特性的计算表明:DPNS方程组的数值结果均与NS方程组的数值结果很好相符。  相似文献   
4.
对于高Re数流动计算,在通常二阶精度NS差分格式和网格数条件下,存在某些粘性项落入修正微分方程截断误差项的问题。这类NS方程组计算实际是计算某种简化NS方程组,而且重复计算误差物理粘性项既浪费机时和内存,误差积累又会对数值解产生不可预测的影响,避免外述缺陷的办法一个提高NS差分格式的精度,另一个是丢掉可能落入截断误差项的物理粘性项,把NS方程组简化为广义NS方程组,广义NS计算避免了误差物理粘性项误差积累对数值解的不可知影响,又可节省内存和机时,对高Re数流体工程计算很有好处。利用广义NS方程组计算超声速绕前向和后向台阶流动的结果表明:广义NS方程组与NS方程组的数值结果很好相符符。  相似文献   
5.
本文给出钝头细长锥无粘、平衡和非平衡高超声速绕流流场的数值分析。对存在化学反应的空气,考虑了13种气体组分和22个化学反应,包括N_2、O_2和NO的振动松弛与离介过程之间的耦合反应。头部亚-跨声速区和后身高超声速区分别用直线法和有限差分法进行计算。在来流条件M_∞=20~26,Re_∞=(p_∞u_∞α)/μ_∞=1.5×10~3~5.5×10~6(α为头部半径)的参数范围内,给出了绕流流场和等离子体鞘层诸特性,如激波形状、电子密度和电子碰撞频率等。  相似文献   
6.
对高雷诺数流动计算,为了解决部分粘性项甚至全部惯性粘性项落入误差与流动物理尺度的关系问题,本文提出强粘性流动理论。强粘性流中至少有一个粘性项与惯性项同量阶,理论包含了物理尺度各向极限、经典边界层和多层边界层理论为其特例,给出了从经典边界层向物理尺度各向相同极限演化的尺度规律和粘性惯性诸项变化的量阶关系,阐明了粘性与惯性力强相互作用将在剪切层的法向以流向同时“激发”涉尺度结构。对粘性流计算,利用强粘性剪切流尺度律重新标度NS格式的修正微分方程,给出临界网格尺度与流动物理尺度和差分格式精度的关系,得到部分粘性项落入误差和计算结果为非物理数值粘性解的二个判据。并以流场中的边界层、驻点和分离点领域计算为例说明理论的应用,对强粘性剪切流计算、证实部分粘性项甚至全部粘性惯性项落入误差的问题值得重视。  相似文献   
7.
基于全生命周期的视角,将大飞机的生命周期划分为3个主要的阶段:飞机研发设计阶段、飞机工程制造阶段、飞机商业运营阶段.对应提出了3种不同的产学研合作模式:企业大学共同创新的战略型合作模式、企业工程化主导的协同型合作模式;企业商业化主导的价值型合作模式.通过对这3种模式的剖析,以期为大飞机研制过程中产学研合作模式的选择提供理论支撑.  相似文献   
8.
三维简化Navier-Stokes方程的最优形式   总被引:1,自引:0,他引:1  
引言 最近十多年,简化NS方程(以下记为SNS)的研究和计算有长足进展。由于在NS方程组中对粘性项的取舍不同,因而有几种不同的简化NS方程组,究竟哪种形式更合理,是需进一步探讨的一个问题。文献[1]利用原始NS方程及三种不同的简化NS方程组,对球的超音速绕流数值试验表明,其效果是不一样的。文献[3]也指出,如果SNS方程组的形式选择不当,会带来不可忽略的误差。从二维研究不难看出,目前广泛采用的三维SNS方程即粘性激波层方程组(VSL)及抛物化NS方程组(PNS),都不是最合理的简化形式。本文提出三维NS方程组的一种最好形式,称为修正的PNS方程组(记为MPNS),并论证它的合理性及精确度。  相似文献   
9.
摄动有限差分(PFD)方法从一阶迎风差分格式出发,将差分系数展开为网格步长的幂级数,通过提高修正微分方程的逼近精度来获得更高精度的差分格式。由于格式基于一阶迎风格式,因此具有迎风效应、网格节点少等特点。本文首先通过对Burgers方程的摄动差分格式的推导,将摄动有限差分格式引入时间相关法的计算,并构造了守恒形式的摄动有限差分格式,然后推广到一维Navier-Stokes方程组的计算。数值比较研究表明:本文构造的NS方程摄动有限差分格式具有比一阶迎风较高的精度和分辨率,而且保持了一阶迎风格式的无振荡性质。  相似文献   
10.
在干扰剪切流(Interacting Shear Flow,ISF)理论的基础上,提出ISF稳定性理论并把它用于改进高雷诺(Re)数流动计算方法。(1)高Re数内外绕流的RANS计算及工业标准PNS计算中,流动转捩的预测均基于经典边界层理论;然而转捩并非总是最早发生在边界层中,例如发生在壁面小突起、小凹坑、小窄缝等局部粘性/无粘强干扰区,这些强干扰区可能位于边界层内,但边界层理论并不适用于它们,又如转捩发生在分离点邻域强干扰区等。(2)ISF理论表明:高Re数内外绕流为一复杂ISF,转捩总是最早发生在该ISF的层流区中。(3)ISF稳定性理论表明:作者提出的干扰剪切扰动流(Interacting Shear Perturbed Flow,ISPF)方程组可以计算ISF层流中非湍流扰动运动演化并预测转捩;ISF方程组和ISPF方程组分别与PNS和抛物化稳定性方程(PSE)为同类方程组,PSE分析计算边界层稳定性的众多成功实践,说明用ISPF(即PSE)方程组计算ISF层流扰动流并预测转捩完全可行。(4)RANS和PNS方法经ISF稳定性理论改进后,在转捩前用ISF方程组(即PNS)计算ISF层流基本流,用ISPF方程组(即PSE)计算ISF层流扰动流并预测转捩位置;转捩后RANS方法计算RANS或RANS/LES,PNS方法计算干扰剪切湍流(ISTF)方程组即抛物化RANS(PRANS)方程组。改进后的两方法,理论合理正确,方程体系完备、自洽,ISF方程组只能用ISPF方程组相配对,因此是高Re数内外绕流计算的理想且可持续发展的两种方法。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号