首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81篇
  免费   1篇
航空   44篇
航天技术   14篇
综合类   2篇
航天   22篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2015年   1篇
  2014年   4篇
  2012年   2篇
  2011年   2篇
  2010年   2篇
  2009年   3篇
  2008年   8篇
  2007年   7篇
  2006年   2篇
  2005年   4篇
  2004年   3篇
  2003年   4篇
  2000年   4篇
  1998年   5篇
  1997年   1篇
  1996年   2篇
  1995年   3篇
  1993年   1篇
  1992年   1篇
  1990年   2篇
  1989年   3篇
  1987年   1篇
  1985年   6篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1977年   1篇
  1968年   1篇
排序方式: 共有82条查询结果,搜索用时 296 毫秒
1.
This study introduces a field oriented controlled (FOC) induction machine based flywheel energy storage (FES) system fed from a 20 kHz high frequency (HF) ac link and pulse density modulated (PDM) Converter. The feasibility of FES system is investigated both in software and hardware and is demonstrated successfully in both cases. The investigated system offers a good potential as a temporary energy storage system for various applications from automobile industry to aerospace applications.  相似文献   
2.
The USA has adopted the long-term goal of exploring the space frontier, including establishing human settlements beyond Earth orbit. This article describes four candidate missions for developing pathways into the Solar System which have been identified by NASA's Office of Exploration: human expeditions to Phobos and Mars, a lunar observatory and a lunar outpost to assist Mars explorations. The requirements placed upon near-term programmes by each of these missions are outlined and the elements necessary for a long-term implementation strategy are analysed.  相似文献   
3.
In order to help assess the risk to astronauts due to the long-term exposure to the natural radiation environment in space, an understanding of how the primary radiation field is changed when passing through shielding and tissue materials must be obtained. One important aspect of the change in the primary radiation field after passing through shielding materials is the production of secondary particles from the breakup of the primary. Neutrons are an important component of the secondary particle field due to their relatively high biological weighting factors, and due to their relative abundance, especially behind thick shielding scenarios. Because of the complexity of the problem, the estimation of the risk from exposure to the secondary neutron field must be handled using calculational techniques. However, those calculations will need an extensive set of neutron cross section and thicktarget neutron yield data in order to make an accurate assessment of the risk. In this paper we briefly survey the existing neutron-production data sets that are applicable to the space radiation transport problem, and we point out how neutron production from protons is different than neutron production from heavy ions. We also make comparisons of one the heavy-ion data sets with Boltzmann-Uehling-Uhlenbeck (BUU) calculations.  相似文献   
4.
The designs of cold space telescopes, cryogenic and radiatively cooled, are similar in most elements and both benefit from orbits distant from the Earth. In particular such orbits allow the anti-sunward side of radiatively-cooled spacecraft to be used to provide large cooling radiators for the individual radiation shields. Designs incorporating these features have predictedT tel near 20 K. The attainability of such temperatures is supported by limited practical experience (IRAS, COBE). Supplementary cooling systems (cryogens, mechanical coolers) can be advantageously combined with radiative cooling in hybrid designs to provide robustness against deterioration and yet lower temperatures for detectors, instruments, and even the whole telescope. The possibility of such major additional gains is illustrated by the Very Cold Telescope option under study forEdison, which should offerT tel5 K for a little extra mechanical cooling capacity.  相似文献   
5.
6.
7.
Cockpits are rapidly changing from dedicated instruments to multifunction displays, integrated controls, and computer controlled subsystems. Solid-state displays, voice recognition, and artificial intelligence are just a few of the emerging technologies that will help the pilot perform his mission in the future. Early investigations involving mission analysis, sensor data, software development, and evaluations will be required to insure total integration. These new technologies will require extensive human factors research in the areas of anthropometry, displays, controls, human/computer interface, automation, and workload assessment to support the integration process. This research will help provide weapons systems that have increased survivability and reduced pilot workload. This paper addresses some of the human factors research that will be needed to help develop future cockpit systems. It also reviews the basic evolution of the crew station and some of the emerging technologies that will drive human factors research in the 1990s. In the past, crew systems were designed to provide each aircraft function with a corresponding instrument display, such as airspeed indicator, altimeter, attitude direction indicator, vertical velocity indicator, etc. The bulk of the information had to be integrated by the pilot. Present systems are in a state of transition. We are rapidly moving from individual instruments to multifunction displays. The C-17, HH-60, F-15E, B-1B, F-111D, and F-16C/D aircraft use multifunction, cathode-ray tube displays, some of which are color. Another trend is the continued increase in the use of integrated controls.  相似文献   
8.
Global Navigation Satellite Systems (GNSS), in particular the Global Positioning System (GPS), have been widely used for high accuracy geodetic positioning. The Least Squares functional models related to the GNSS observables have been more extensively studied than the corresponding stochastic models, given that the development of the latter is significantly more complex. As a result, a simplified stochastic model is often used in GNSS positioning, which assumes that all the GNSS observables are statistically independent and of the same quality, i.e. a similar variance is assigned indiscriminately to all of the measurements. However, the definition of the stochastic model may be approached from a more detailed perspective, considering specific effects affecting each observable individually, as for example the effects of ionospheric scintillation. These effects relate to phase and amplitude fluctuations in the satellites signals that occur due to diffraction on electron density irregularities in the ionosphere and are particularly relevant at equatorial and high latitude regions, especially during periods of high solar activity. As a consequence, degraded measurement quality and poorer positioning accuracy may result.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号