首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61篇
  免费   1篇
航空   30篇
航天技术   11篇
综合类   2篇
航天   19篇
  2019年   1篇
  2018年   1篇
  2015年   1篇
  2014年   4篇
  2012年   1篇
  2011年   3篇
  2010年   2篇
  2009年   3篇
  2008年   7篇
  2007年   6篇
  2006年   2篇
  2005年   3篇
  2004年   2篇
  2003年   4篇
  2000年   4篇
  1998年   1篇
  1996年   2篇
  1995年   2篇
  1992年   1篇
  1990年   2篇
  1989年   3篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1968年   1篇
排序方式: 共有62条查询结果,搜索用时 15 毫秒
1.
One of the primary mission risks tracked in the development of all spacecraft is that due to micro-meteoroids and orbital debris (MMOD). Both types of particles, especially those larger than 0.1 mm in diameter, contain sufficient kinetic energy due to their combined mass and velocities to cause serious damage to crew members and spacecraft. The process used to assess MMOD risk consists of three elements: environment, damage prediction, and damage tolerance. Orbital debris risk assessments for the Orion vehicle, as well as the Shuttle, Space Station and other satellites use ballistic limit equations (BLEs) that have been developed using high speed impact test data and results from numerical simulations that have used spherical projectiles. However, spheres are not expected to be a common shape for orbital debris; rather, orbital debris fragments might be better represented by other regular or irregular solids. In this paper we examine the general construction of NASA’s current orbital debris (OD) model, explore the potential variations in orbital debris mass and shape that are possible when using particle characteristic length to define particle size (instead of assuming spherical particles), and, considering specifically the Orion vehicle, perform an orbital debris risk sensitivity study taking into account variations in particle mass and shape as noted above. While the results of the work performed for this study are preliminary, they do show that continuing to use aluminum spheres in spacecraft risk assessments could result in an over-design of its MMOD protection systems. In such a case, the spacecraft could be heavier than needed, could cost more than needed, and could cost more to put into orbit than needed. The results obtained in this study also show the need to incorporate effects of mass and shape in mission risk assessment prior to first flight of any spacecraft as well as the need to continue to develop/refine BLEs so that they more accurately reflect the shape and material density variations inherent to the actual debris environment.  相似文献   
2.
3.
Global Navigation Satellite Systems (GNSS), in particular the Global Positioning System (GPS), have been widely used for high accuracy geodetic positioning. The Least Squares functional models related to the GNSS observables have been more extensively studied than the corresponding stochastic models, given that the development of the latter is significantly more complex. As a result, a simplified stochastic model is often used in GNSS positioning, which assumes that all the GNSS observables are statistically independent and of the same quality, i.e. a similar variance is assigned indiscriminately to all of the measurements. However, the definition of the stochastic model may be approached from a more detailed perspective, considering specific effects affecting each observable individually, as for example the effects of ionospheric scintillation. These effects relate to phase and amplitude fluctuations in the satellites signals that occur due to diffraction on electron density irregularities in the ionosphere and are particularly relevant at equatorial and high latitude regions, especially during periods of high solar activity. As a consequence, degraded measurement quality and poorer positioning accuracy may result.  相似文献   
4.
Cockpits are rapidly changing from dedicated instruments to multifunction displays, integrated controls, and computer controlled subsystems. Solid-state displays, voice recognition, and artificial intelligence are just a few of the emerging technologies that will help the pilot perform his mission in the future. Early investigations involving mission analysis, sensor data, software development, and evaluations will be required to insure total integration. These new technologies will require extensive human factors research in the areas of anthropometry, displays, controls, human/computer interface, automation, and workload assessment to support the integration process. This research will help provide weapons systems that have increased survivability and reduced pilot workload. This paper addresses some of the human factors research that will be needed to help develop future cockpit systems. It also reviews the basic evolution of the crew station and some of the emerging technologies that will drive human factors research in the 1990s. In the past, crew systems were designed to provide each aircraft function with a corresponding instrument display, such as airspeed indicator, altimeter, attitude direction indicator, vertical velocity indicator, etc. The bulk of the information had to be integrated by the pilot. Present systems are in a state of transition. We are rapidly moving from individual instruments to multifunction displays. The C-17, HH-60, F-15E, B-1B, F-111D, and F-16C/D aircraft use multifunction, cathode-ray tube displays, some of which are color. Another trend is the continued increase in the use of integrated controls.  相似文献   
5.
6.
7.
This study introduces a field oriented controlled (FOC) induction machine based flywheel energy storage (FES) system fed from a 20 kHz high frequency (HF) ac link and pulse density modulated (PDM) Converter. The feasibility of FES system is investigated both in software and hardware and is demonstrated successfully in both cases. The investigated system offers a good potential as a temporary energy storage system for various applications from automobile industry to aerospace applications.  相似文献   
8.
The USA has adopted the long-term goal of exploring the space frontier, including establishing human settlements beyond Earth orbit. This article describes four candidate missions for developing pathways into the Solar System which have been identified by NASA's Office of Exploration: human expeditions to Phobos and Mars, a lunar observatory and a lunar outpost to assist Mars explorations. The requirements placed upon near-term programmes by each of these missions are outlined and the elements necessary for a long-term implementation strategy are analysed.  相似文献   
9.
Over the past ten years, the authors and their associates have used Landsat images and collateral data to prepare visual thematic maps. The data are used in a projection-compositor (Procom) system that enlarges Landsat images and other data to scales as great as 1:15 000. Revisions of existing maps for simple themes (e.g. topographic maps) can be completed quickly, accurately and inexpensively. Complex themes, such as geological formations and structures, can be mapped through the optical merging of collateral data sets (e.g. Landsat, geophysics, geology) at a common scale. Such mapping has led to the recognition of a non-parallactic means of obtaining whole image stereo-models with large vertical exaggerations using Landsat images.  相似文献   
10.
We review some of the most important theoretical ideas and observations for quasars and the nuclei of active galaxies, and suggest areas of future research. Emphasis is on the nature of the power source, the radiation processes, and the mechanism for formation and collimation of jets. Phenomena that produce X-rays are of particular concern. Particular topics discussed are the observed and expected time variability, the gas supply mechanisms and luminosity evolution, thermal and nonthermal radiation processes, observed and theoretical spectra, criteria for thermalization of electrons and ions, effects of electron-positron pairs on relativistic plasmas, hydrodynamic, electrodynamic and inertial methods for producing and confining jets. We conclude with a list of needed observations.Based on a lecture given at the Goddard Workshop on X-ray Astronomy (October 1981).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号