首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   125篇
  免费   64篇
  国内免费   35篇
航空   120篇
航天技术   24篇
综合类   5篇
航天   75篇
  2023年   6篇
  2022年   16篇
  2021年   11篇
  2020年   11篇
  2019年   14篇
  2018年   6篇
  2017年   5篇
  2016年   6篇
  2015年   9篇
  2014年   12篇
  2013年   14篇
  2012年   9篇
  2011年   16篇
  2010年   10篇
  2009年   4篇
  2008年   3篇
  2007年   12篇
  2006年   12篇
  2005年   4篇
  2004年   8篇
  2003年   5篇
  2002年   2篇
  2001年   4篇
  2000年   5篇
  1999年   1篇
  1998年   1篇
  1997年   5篇
  1996年   3篇
  1995年   2篇
  1992年   2篇
  1991年   1篇
  1990年   3篇
  1989年   1篇
  1987年   1篇
排序方式: 共有224条查询结果,搜索用时 46 毫秒
41.
A hybrid calibration approach based on support vector machines (SVM) is proposed to characterize nonlinear cross coupling of multi-dimensional transducer. It is difficult to identify these unknown nonlinearities and crosstalk just with a single conventional calibration approach. In this paper, a hybrid model comprising calibration matrix and SVM model for calibrating linearity and nonlinearity respectively is built up. The calibration matrix is determined by linear artificial neural network (ANN), and the SVM is used to compensate for the nonlinear cross coupling among each dimension. A simulation of the calibration of a multi-dimensional sensor is conducted by the SVM hybrid calibration method, which is then utilized to calibrate a six-component force/torque transducer of wind tunnel balance. From the calibrating results, it can be indicated that the SVM hybrid calibration method has improved the calibration accuracy significantly without increasing data samples, compared with calibration matrix. Moreover, with the calibration matrix, the hybrid model can provide a basis for the design of transducers.  相似文献   
42.
Design reliability and robustness are getting increasingly important for the general design of aerospace systems with many inherently uncertain design parameters. This paper presents a hybrid uncertainty-based design optimization (UDO) method developed from probability theory and interval theory. Most of the uncertain design parameters which have sufficient information or experimental data are classified as random variables using probability theory, while the others are defined as interval variables with interval theory. Then a hybrid uncertainty analysis method based on Monte Carlo simulation and Taylor series interval analysis is developed to obtain the uncer-tainty propagation from the design parameters to system responses. Three design optimization strategies, including deterministic design optimization (DDO), probabilistic UDO and hybrid UDO, are applied to the conceptual design of a hybrid rocket motor (HRM) used as the ascent propulsion system in Apollo lunar module. By comparison, the hybrid UDO is a feasible method and can be effectively applied to the general design of aerospace systems.  相似文献   
43.
混合回归模型及其在高耸结构风响应时域分析中的应用   总被引:1,自引:0,他引:1  
针对多维AR模型同时求解回归系数矩阵所有元素的一些不足之处,本文提出了混合回归模型。通过对某一高耸结构的分析,表明混合回归模型对脉动风的模拟是有效的,并人数值模拟角度验证了,对于线性结构,外激的各态历经性可保证响应的各态历经性。  相似文献   
44.
A high-resolution simulation tool for rotorcraft aerodynamics is developed by coupling CFD with a Vorticity Transport Model (VTM). An Eulerian-based CFD module is used to model the blade near body flowfield, and a Lagrangian-based VTM module is employed for vortex tracking in the far wake. The coupling procedure is implemented by transmitting vortex sources to the VTM module and feeding boundary conditions back to the CFD module. The presented CFD/VTM hybrid solver is firstly validated by hover cases of three different rotor configurations. Simulation results, including the blade surface pressure distribution, rotor downwash, and hover figure of merit, exhibit favorable correlations with available experimental data. Then, a rotor operated in vertical descending flight with a fixed collective pitch is investigated. It is shown that the CFD/VTM coupling method is suitable for rotor wake simulation. Wake instabilities (far wake breakdown in hover and toroidal wake pattern in the vortex ring state) are successfully demonstrated with a moderate computational cost.  相似文献   
45.
应用Hybrid FE-SEA方法,对某导弹仪器舱在宽频混响声场中结构响应进行了分析计算,并将Hybrid FE-SEA方法预示结果与试验结果作了比较,初步验证了Hybrid FE-SEA方法计算复杂结构声振响应的可行性.  相似文献   
46.
《中国航空学报》2020,33(9):2295-2312
In this paper, a hybrid Lattice Boltzmann Flux Solver (LBFS) with an improved switch function is proposed for simulation of integrated hypersonic fluid-thermal-structural problems. In the solver, the macroscopic Navier–Stokes equations and structural heat transfer equation are discretized by the finite volume method, and the numerical fluxes at the cell interface are reconstructed by the local solution of the Boltzmann equation. To compute the numerical fluxes, two equilibrium distribution functions are introduced. One is the D1Q4 discrete velocity model for calculating the inviscid flux across the cell interface of Navier–Stokes equations, and the other is the D2Q4 model for evaluating the flux of structural energy equation. In this work, a new dual thermal resistance model is proposed to calculate the thermal properties at the fluid–solid interface. The accuracy and stability of the present hybrid solver are validated by simulating several numerical examples, including the fluid-thermal-structural problem of cylindrical leading edge. Numerical results show that the present solver can accurately predict the thermal properties of hypersonic fluid-thermal-structural problems and has the great potential for solving fluid-thermal-structural problems of long-endurance high-speed vehicles.  相似文献   
47.
金鑫  任保全  李洪钧  巩向武  董飞鸿 《宇航学报》2019,40(12):1444-1452
针对星-地混合通信网络前向链路在部分非理想信道状态信息(CSI)及非理想CSI下卫星窃听链路的安全问题,提出一种将地面基站信号作为协同干扰的安全传输方案。优化目标为地面基站节点传输速率最大,确保卫星合法节点接收信号质量,同时利用地面基站发送信号阻塞卫星潜在窃听节点对卫星信号的侦听。通过半定松弛原理将其转化为可解的凸优化问题,分别设计分层迭代、高斯随机化和二分搜索算法对问题进行优化求解。仿真校验结果表明,所提方案能够降低网络对CSI误差的敏感性,提高网络的可靠性和保密性。  相似文献   
48.
《中国航空学报》2020,33(1):149-160
Accurate predictions of Shock Waves and Boundary Layer Interaction (SWBLI) and strong Shock Waves and Wake Vortices Interaction (SWWVI) in a highly-loaded turbine propose challenges to the currently widely used Reynolds-Averaged Navier-Stokes (RANS) model. In this work, the SWBLI and the SWWVI in a highly-loaded Nozzle Guide Vane (NGV) are studied using a hybrid RANS/LES strategy. The Turbulence Kinetic Energy (TKE) budget and the Proper Orthogonal Decomposition (POD) method are used to analyze flow mechanisms. Results show that this hybrid RANS/LES method can obtain detailed flow structures for flow mechanisms analysis. Strong shock waves induce boundary layer separation, while the presence of a separation bubble can in turn lead to a Mach reflection phenomenon. The shock waves cause trailing-edge vortices to break clearly, and the wakes, in turn, can change the shocks intensity and direction. Furthermore, the Entropy Generation Rate (EGR) is used to analyze the irreversible loss. It turns out that the SWWVI can reduce the flow field loss. There are several weak shock waves in the NGV flow field, which can increase the irreversible loss. This work offers flow mechanisms analysis and presents the EGR distribution in SWBLI and SWWVI areas in a transonic turbine blade.  相似文献   
49.
Robotic belt grinding has emerged as a finishing process in recent years for machining components with high surface finish and flexibility.The surface machining consistency, however,is difficult to be guaranteed in such a process.To overcome this problem, a method of hybrid force-position control combined with PI/PD control is proposed to be applied in robotic abrasive belt grinding of complex geometries.Voltage signals are firstly obtained and transformed to force information with signal conditioning methods.Secondly, zero drift and gravity compensation algorithms are presented to calibrate the F/T transducer which is installed on the robot end-effector.Next, a force control strategy combining hybrid force-position control with PI/PD control is introduced to be employed in robotic abrasive belt grinding operations where the force control law is applied to the Z direction of the tool frame and the positon control law is used in the X direction of the tool frame.Then, the accuracy of the F/T transducer and the robotic force control system is analyzed to ensure the stability and reliability of force control in the robotic grinding process.Finally, two typical cases on robotic belt grinding of a test workpiece and an aero-engine blade are conducted to validate the practicality and effectiveness of the force control technology proposed.  相似文献   
50.
In this paper, a general new methodology is presented for the orbital reconfiguration of satellite constellations on the basis of Lambert targeting theorem. In view of the cost and risk reduction, it is very important to consider the problem of satellite constellation reconfiguration with the two constraints of overall mission cost minimization and the desired final configuration. Hence, the dependent non-simultaneous deployment approach is proposed to minimize overall fuel cost. Despite the fact that the satellites deploy in a non-simultaneous manner, supplementary phasing maneuvers on the target orbital pattern to achieve the desired orbital configuration are avoided. Moreover, a novel idea is presented to optimize the flight of satellites, which plays an important role in complying with the constraint of overall fuel cost minimization as much as possible. In order to achieve the global optimal solution of the satellite constellation reconfiguration problem, the efficient hybrid Particle Swarm Optimization/Genetic Algorithm (PSO/GA) technique, is implemented. Finally, to indicate the superiority of the presented method, a comparison to the simultaneous maneuver viewpoint is made on a number of representative cases. The obtained results imply significant reduction of reconfiguration costs by employing the proposed method.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号