首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   291篇
  免费   1篇
  国内免费   2篇
航空   144篇
航天技术   56篇
综合类   2篇
航天   92篇
  2021年   6篇
  2020年   4篇
  2019年   4篇
  2018年   5篇
  2017年   7篇
  2016年   3篇
  2015年   3篇
  2014年   6篇
  2013年   12篇
  2012年   10篇
  2011年   14篇
  2010年   9篇
  2009年   21篇
  2008年   12篇
  2007年   23篇
  2006年   7篇
  2005年   11篇
  2004年   7篇
  2003年   9篇
  2002年   7篇
  2001年   7篇
  2000年   5篇
  1998年   12篇
  1997年   2篇
  1996年   7篇
  1995年   8篇
  1993年   2篇
  1992年   5篇
  1989年   2篇
  1987年   3篇
  1986年   2篇
  1985年   5篇
  1984年   2篇
  1983年   3篇
  1982年   3篇
  1981年   5篇
  1980年   3篇
  1979年   1篇
  1977年   3篇
  1976年   1篇
  1975年   1篇
  1974年   3篇
  1973年   3篇
  1972年   1篇
  1970年   2篇
  1969年   2篇
  1968年   4篇
  1967年   8篇
  1966年   5篇
  1965年   1篇
排序方式: 共有294条查询结果,搜索用时 15 毫秒
1.
Confused and short-sighted decisions dominated by political expediency have been made about US space policy in the past 30 years. Overly large and ambitious systems have been chosen, resulting in today's crisis in space transportation. The history of commercial aircraft development offers an alternative example of producing in a range of sizes and capabilities for a wide variety of users, and shows that the space transport industry could benefit from applying the decision-making processes used in private enterprise. The authors examine strategies for privatization of space transportation and conclude that policy support for the commercial launch industry must be continued. NASA must be reoriented towards its basic research function, and more government services should be bought from the private sector.  相似文献   
2.
de Vuyst  Tom  Vignjevic  Rade  Bourne  Neil K.  Campbell  James 《Space Debris》2000,2(4):225-232
Spall caused by hypervelocity impacts at the lower range of velocities could result in significant damage to spacecraft. A number of polycrystalline alloys, used in spacecraft manufacturing, exhibit a pronounced anisotropy in their mechanical properties. The aluminium alloy AA 7010, whose orthotropy is a consequence of the meso-scale phase distribution or grain morphology, has been chosen for this investigation. The material failure observed in plate impact was simulated using a number of spall models. The Hugoniot elastic limit and spall strength have been studied as a function of orientation, and compared to experimental results.  相似文献   
3.
The Active Rack Isolation System [ARIS] International Space Station [ISS] Characterization Experiment, or ARIS-ICE for short, is a long duration microgravity characterization experiment aboard the ISS. The objective of the experiment is to fully characterize active microgravity performance of the first ARIS rack deployed on the ISS. Efficient ground and on-orbit command and data handling [C&DH] segments are the crux in achieving the challenging objectives of the mission. The objective of the paper is to provide an overview of the C&DH architectures developed for ARIS-ICE, with the view that these architectures may serve as a model for future ISS microgravity payloads. Both ground and on-orbit segments, and their interaction with corresponding ISS C&DH systems are presented. The heart of the on-orbit segment is the ARIS-ICE Payload On-orbit Processor, ARIS-ICE POP for short. The POP manages communication with the ISS C&DH system and other ISS subsystems and payloads, enables automation of test/data collection sequences, and provides a wide range of utilities such as efficient file downlinks/uplinks, data post-processing, data compression and data storage. The hardware and software architecture of the POP is presented and it is shown that the built-in functionality helps to dramatically streamline the efficiency of on-orbit operations. The ground segment has at its heart special ARIS-ICE Ground Support Equipment [GSE] software developed for the experiment. The software enables efficient command and file uplinks, and reconstruction and display of science telemetry packets. The GSE software architecture is discussed along with its interactions with ISS ground C&DH elements. A test sequence example is used to demonstrate the interplay between the ground and on-orbit segments.  相似文献   
4.
The major goals of NASA's Terrestrial Planet Finder (TPF) and the European Space Agency's Darwin missions are to detect terrestrial-sized extrasolar planets directly and to seek spectroscopic evidence of habitable conditions and life. Here we recommend wavelength ranges and spectral features for these missions. We assess known spectroscopic molecular band features of Earth, Venus, and Mars in the context of putative extrasolar analogs. The preferred wavelength ranges are 7-25 microns in the mid-IR and 0.5 to approximately 1.1 microns in the visible to near-IR. Detection of O2 or its photolytic product O3 merits highest priority. Liquid H2O is not a bioindicator, but it is considered essential to life. Substantial CO2 indicates an atmosphere and oxidation state typical of a terrestrial planet. Abundant CH4 might require a biological source, yet abundant CH4 also can arise from a crust and upper mantle more reduced than that of Earth. The range of characteristics of extrasolar rocky planets might far exceed that of the Solar System. Planetary size and mass are very important indicators of habitability and can be estimated in the mid-IR and potentially also in the visible to near-IR. Additional spectroscopic features merit study, for example, features created by other biosignature compounds in the atmosphere or on the surface and features due to Rayleigh scattering. In summary, we find that both the mid-IR and the visible to near-IR wavelength ranges offer valuable information regarding biosignatures and planetary properties; therefore both merit serious scientific consideration for TPF and Darwin.  相似文献   
5.
Bacterial spores have been used as model systems for studying the theory of interplanetary transport of life by natural processes such as asteroidal or cometary impacts (i.e., lithopanspermia). Because current spallation theory predicts that near-surface rocks are ideal candidates for planetary ejection and surface basalts are widely distributed throughout the rocky planets, we isolated spore-forming bacteria from the interior of near-subsurface basalt rocks collected in the Sonoran desert near Tucson, Arizona. Spores were found to inhabit basalt at very low concentrations (相似文献   
6.
In the 36 years between June 1965 and February 2001, the US human space flight program has conducted 100 spacewalks, or extravehicular activities (EVAs), as NASA officially calls them. EVA occurs when astronauts wearing spacesuits travel outside their protective spacecraft to perform tasks in the space vacuum environment. US EVA started with pioneering feasibility tests during the Gemini Program. The Apollo Program required sending astronauts to the moon and performing EVA to explore the lunar surface. EVA supported scientific mission objectives of the Skylab program, but may be best remembered for repairing launch damage to the vehicle and thus saving the program. EVA capability on Shuttle was initially planned to be a kit that could be flown at will, and was primarily intended for coping with vehicle return emergencies. The Skylab emergency and the pivotal role of EVA in salvaging that program quickly promoted Shuttle EVA to an essential element for achieving mission objectives, including retrieving satellites and developing techniques to assemble and maintain the International Space Station (ISS). Now, EVA is supporting assembly of ISS. This paper highlights development of US EVA capability within the context of the overarching mission objectives of the US human space flight program.  相似文献   
7.
Jurewicz  A.J.G.  Burnett  D.S.  Wiens  R.C.  Friedmann  T.A.  Hays  C.C.  Hohlfelder  R.J.  Nishiizumi  K.  Stone  J.A.  Woolum  D.S.  Becker  R.  Butterworth  A.L.  Campbell  A.J.  Ebihara  M.  Franchi  I.A.  Heber  V.  Hohenberg  C.M.  Humayun  M.  McKeegan  K.D.  McNamara  K.  Meshik  A.  Pepin  R.O.  Schlutter  D.  Wieler  R. 《Space Science Reviews》2003,105(3-4):535-560
Genesis (NASA Discovery Mission #5) is a sample return mission. Collectors comprised of ultra-high purity materials will be exposed to the solar wind and then returned to Earth for laboratory analysis. There is a suite of fifteen types of ultra-pure materials distributed among several locations. Most of the materials are mounted on deployable panels (‘collector arrays’), with some as targets in the focal spot of an electrostatic mirror (the ‘concentrator’). Other materials are strategically placed on the spacecraft as additional targets of opportunity to maximize the area for solar-wind collection. Most of the collection area consists of hexagonal collectors in the arrays; approximately half are silicon, the rest are for solar-wind components not retained and/or not easily measured in silicon. There are a variety of materials both in collector arrays and elsewhere targeted for the analyses of specific solar-wind components. Engineering and science factors drove the selection process. Engineering required testing of physical properties such as the ability to withstand shaking on launch and thermal cycling during deployment. Science constraints included bulk purity, surface and interface cleanliness, retentiveness with respect to individual solar-wind components, and availability. A detailed report of material parameters planned as a resource for choosing materials for study will be published on a Genesis website, and will be updated as additional information is obtained. Some material is already linked to the Genesis plasma data website (genesis.lanl.gov). Genesis should provide a reservoir of materials for allocation to the scientific community throughout the 21st Century. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
8.
The Extreme Ultraviolet Imager Investigation for the IMAGE Mission   总被引:13,自引:0,他引:13  
Sandel  B.R.  Broadfoot  A.L.  Curtis  C.C.  King  R.A.  Stone  T.C.  Hill  R.H.  Chen  J.  Siegmund  O.H.W.  Raffanti  R.  Allred  DAVID D.  Turley  R. STEVEN  Gallagher  D.L. 《Space Science Reviews》2000,91(1-2):197-242
The Extreme Ultraviolet Imager (EUV) of the IMAGE Mission will study the distribution of He+ in Earth's plasmasphere by detecting its resonantly-scattered emission at 30.4 nm. It will record the structure and dynamics of the cold plasma in Earth's plasmasphere on a global scale. The 30.4-nm feature is relatively easy to measure because it is the brightest ion emission from the plasmasphere, it is spectrally isolated, and the background at that wavelength is negligible. Measurements are easy to interpret because the plasmaspheric He+ emission is optically thin, so its brightness is directly proportional to the He+ column abundance. Effective imaging of the plasmaspheric He+ requires global `snapshots in which the high apogee and the wide field of view of EUV provide in a single exposure a map of the entire plasmasphere. EUV consists of three identical sensor heads, each having a field of view 30° in diameter. These sensors are tilted relative to one another to cover a fan-shaped field of 84°×30°, which is swept across the plasmasphere by the spin of the satellite. EUVs spatial resolution is 0.6° or 0.1 R E in the equatorial plane seen from apogee. The sensitivity is 1.9 count s–1 Rayleigh–1, sufficient to map the position of the plasmapause with a time resolution of 10 min.  相似文献   
9.
The Near-Infrared Spectrometer (NIS) instrument on the Near-Earth Asteroid Rendezvous (NEAR) spacecraft is designed to map spectral properties of the mission target, the S-type asteroid 433 Eros, at near-infrared wavelengths diagnostic of the composition of minerals forming S asteroids. NIS is a grating spectrometer, in which light is directed by a dichroic beam-splitter onto a 32-element Ge detector (center wavelengths, 816–1486 nm) and a 32-element InGaAs detector (center wavelengths, 1371–2708 nm). Each detector reports a 32-channel spectrum at 12-bit quantization. The field-of-view is selectable using slits with dimensions calibrated at 0.37° × 0.76° (narrow slit) and 0.74° × 0.76° (wide slit). A shutter can be closed for dark current measurements. For the Ge detector, there is an option to command a 10x boost in gain. A scan mirror rotates the field-of-view over a 140° range, and a diffuse gold radiance calibration target is viewable at the sunward edge of the field of regard. Spectra are measured once per second, and up to 16 can be summed onboard. Hyperspectral image cubes are built up by a combination of down-track spacecraft motion and cross-track scanning of the mirror. Instrument software allows execution of data acquisition macros, which include selection of the slit width, number of spectra to sum, gain, mirror scanning, and an option to interleave dark spectra with the shutter closed among asteroid observations. The instrument was extensively characterized by on-ground calibration, and a comprehensive program of in-flight calibration was begun shortly after launch. NIS observations of Eros will largely be coordinated with multicolor imaging from the Multispectral Imager (MSI). NIS will begin observing Eros during approach to the asteroid, and the instrument will map Eros at successively higher spatial resolutions as NEAR's orbit around Eros is lowered incrementally to 25 km altitude. Ultimate products of the investigation will include composition maps of the entire illuminated surface of Eros at spatial resolutions as high as 300 m.  相似文献   
10.
The physical parameters that influence the photometric and polarimetric properties of a solid are enumerated and used to guide a comparison of laboratory measurements with observations of Mars. Both the bright and dark areas of Mars are found to be covered by a fine powder. Furthermore, they appear to have a very similar chemical composition. It is argued that goethite is a major constituent of both regions. The particles on the bright areas are characterized by an average particle radius of 25 , while those on the dark areas have a mean size of 100 outside of the period of seasonal darkening and about 200 near the peak of the darkening. The seasonal darkening of the dark areas is the result of a change in the average particle dimension without an accompanying chemical change.The Martian atmosphere has much less of an influence on the photometric and polarimetric observations than was previously supposed. The observed lack of contrast in the blue appears to be largely the result of an intrinsic loss of surface contrast, and not an effect of a hypothetical atmospheric blue haze.
Résumé Les paramètres physiques qui influencent les propriétés photométriques et polarimétriques d'un solide sont énumérés et utilisés pour conduire une comparaison entre des mesures de laboratoire et des observations de Mars. On trouve que les régions brillantes et les régions sombres de Mars sont couvertes d'une fine poudre. En outre, elles paraissent avoir des compositions chimiques très semblables. Il est soutenu que la goethite est un constituant majeur des deux régions. Les particules des régions brillantes sont caractérisées par un rayon moyen de 25 , tandis que celles des régions sombres ont une taille moyenne de 100 en dehors de la période d'assombrissement saisonnier, et d'environ 200 près du maximum d'assombrissement. L'assombrissement saisonnier des régions sombres est le résultat d'une variation de la dimension moyenne des particules, non accompagné d'un changement chimique.L'influence de l'atmosphère Martienne sur les observations photométriques et polarimétriques est bien inférieure à ce qui était supposé antérieurement. Le manque de contraste que l'on observe dans le bleu, parait être principalement une conséquencede la perte de contraste de surface, et non pas un effet d'un hypothétique halo atmosphérique bleu.


This work was supported in part by grants NGR-09-015-023 and NGR-33-010-082 from the National Aeronautics and Space Administration. A preliminary account was published as Smithsonian Astrophysical Observatory Special Report 258 (1967). This paper is dedicated to the memory of V. V. Sharonov.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号