首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   0篇
航空   25篇
航天技术   8篇
航天   16篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2017年   3篇
  2015年   1篇
  2014年   1篇
  2013年   6篇
  2012年   2篇
  2011年   3篇
  2010年   1篇
  2009年   4篇
  2008年   3篇
  2007年   3篇
  2006年   3篇
  2005年   1篇
  2004年   3篇
  2003年   2篇
  2000年   1篇
  1999年   2篇
  1997年   1篇
  1996年   2篇
  1990年   1篇
  1987年   1篇
  1980年   1篇
  1968年   1篇
排序方式: 共有49条查询结果,搜索用时 204 毫秒
31.
Logistical constraints during long-duration space expeditions will limit the ability of Earth-based mission control personnel to manage their astronaut crews and will thus increase the prevalence of autonomous operations. Despite this inevitability, little research exists regarding crew performance and psychosocial adaptation under such autonomous conditions. To this end, a newly-initiated study on crew management systems was conducted to assess crew performance effectiveness under rigid schedule-based management of crew activities by Mission Control versus more flexible, autonomous management of activities by the crews themselves. Nine volunteers formed three long-term crews and were extensively trained in a simulated planetary geological exploration task over the course of several months. Each crew then embarked on two separate 3–4 h missions in a counterbalanced sequence: Scheduled, in which the crews were directed by Mission Control according to a strict topographic and temporal region-searching sequence, and Autonomous, in which the well-trained crews received equivalent baseline support from Mission Control but were free to explore the planetary surface as they saw fit. Under the autonomous missions, performance in all three crews improved (more high-valued geologic samples were retrieved), subjective self-reports of negative emotional states decreased, unstructured debriefing logs contained fewer references to negative emotions and greater use of socially-referent language, and salivary cortisol output across the missions was attenuated. The present study provides evidence that crew autonomy may improve performance and help sustain if not enhance psychosocial adaptation and biobehavioral health. These controlled experimental data contribute to an emerging empirical database on crew autonomy which the international astronautics community may build upon for future research and ultimately draw upon when designing and managing missions.  相似文献   
32.
We present an analysis of Voyager UVS data obtained between 1993 and mid-2007. These data are used to study the interplanetary background and the hydrogen number density in the outer heliosphere. Two types of observations are studied, first the heliospheric scans performed until 2003 and then the fixed line of sight observations, close to the upwind direction, which are still performed at the end of 2007. We make comparisons with models including multiple scattering and hydrogen distributions derived from self-consistent modeling of the interface region. It is found that there is a remaining discrepancy between models and data. The origin of this difference is unknown but it may be linked to a possible tilting of the heliospheric interface due to the presence of an interstellar magnetic field. We should also estimate alternate sources of emission which are not backscattering of solar photons like collisional excitation of hydrogen in the heliosheath and emission after charge transfer or recombination of proton and electron in HII regions. Line profiles from HST/STIS are also presented.  相似文献   
33.
The James Webb Space Telescope   总被引:4,自引:0,他引:4  
The James Webb Space Telescope (JWST) is a large (6.6 m), cold (<50 K), infrared (IR)-optimized space observatory that will be launched early in the next decade into orbit around the second Earth–Sun Lagrange point. The observatory will have four instruments: a near-IR camera, a near-IR multiobject spectrograph, and a tunable filter imager will cover the wavelength range, 0.6 < ; < 5.0 μ m, while the mid-IR instrument will do both imaging and spectroscopy from 5.0 < ; < 29 μ m.The JWST science goals are divided into four themes. The key objective of The End of the Dark Ages: First Light and Reionization theme is to identify the first luminous sources to form and to determine the ionization history of the early universe. The key objective of The Assembly of Galaxies theme is to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and active nuclei within them evolved from the epoch of reionization to the present day. The key objective of The Birth of Stars and Protoplanetary Systems theme is to unravel the birth and early evolution of stars, from infall on to dust-enshrouded protostars to the genesis of planetary systems. The key objective of the Planetary Systems and the Origins of Life theme is to determine the physical and chemical properties of planetary systems including our own, and investigate the potential for the origins of life in those systems. Within these themes and objectives, we have derived representative astronomical observations.To enable these observations, JWST consists of a telescope, an instrument package, a spacecraft, and a sunshield. The telescope consists of 18 beryllium segments, some of which are deployed. The segments will be brought into optical alignment on-orbit through a process of periodic wavefront sensing and control. The instrument package contains the four science instruments and a fine guidance sensor. The spacecraft provides pointing, orbit maintenance, and communications. The sunshield provides passive thermal control. The JWST operations plan is based on that used for previous space observatories, and the majority of JWST observing time will be allocated to the international astronomical community through annual peer-reviewed proposal opportunities.  相似文献   
34.
The evolution and escape of the martian atmosphere and the planet’s water inventory can be separated into an early and late evolutionary epoch. The first epoch started from the planet’s origin and lasted ~500 Myr. Because of the high EUV flux of the young Sun and Mars’ low gravity it was accompanied by hydrodynamic blow-off of hydrogen and strong thermal escape rates of dragged heavier species such as O and C atoms. After the main part of the protoatmosphere was lost, impact-related volatiles and mantle outgassing may have resulted in accumulation of a secondary CO2 atmosphere of a few tens to a few hundred mbar around ~4–4.3 Gyr ago. The evolution of the atmospheric surface pressure and water inventory of such a secondary atmosphere during the second epoch which lasted from the end of the Noachian until today was most likely determined by a complex interplay of various nonthermal atmospheric escape processes, impacts, carbonate precipitation, and serpentinization during the Hesperian and Amazonian epochs which led to the present day surface pressure.  相似文献   
35.
A direct fusion drive for rocket propulsion   总被引:1,自引:0,他引:1  
The Direct Fusion Drive (DFD), a compact, anuetronic fusion engine, will enable more challenging exploration missions in the solar system. The engine proposed here uses a deuterium–helium-3 reaction to produce fusion energy by employing a novel field-reversed configuration (FRC) for magnetic confinement. The FRC has a simple linear solenoid coil geometry yet generates higher plasma pressure, hence higher fusion power density, for a given magnetic field strength than other magnetic-confinement plasma devices. Waste heat generated from the plasma?s Bremsstrahlung and synchrotron radiation is recycled to maintain the fusion temperature. The charged reaction products, augmented by additional propellant, are exhausted through a magnetic nozzle. A 1 MW DFD is presented in the context of a mission to deploy the James Webb Space Telescope (6200 kg) from GPS orbit to a Sun–Earth L2 halo orbit in 37 days using just 353 kg of propellant and about half a kilogram of 3He. The engine is designed to produce 40 N of thrust with an exhaust velocity of 56.5 km/s and has a specific power of 0.18 kW/kg.  相似文献   
36.
The NASA Ionospheric Connection Explorer Extreme Ultraviolet spectrograph, ICON EUV, will measure altitude profiles of the daytime extreme-ultraviolet (EUV) OII emission near 83.4 and 61.7 nm that are used to determine density profiles and state parameters of the ionosphere. This paper describes the algorithm concept and approach to inverting these measured OII emission profiles to derive the associated \(\mathrm{O}^{+}\) density profile from 150–450 km as a proxy for the electron content in the F-region of the ionosphere. The algorithm incorporates a bias evaluation and feedback step, developed at the U.S. Naval Research Laboratory using data from the Special Sensor Ultraviolet Limb Imager (SSULI) and the Remote Atmospheric and Ionospheric Detection System (RAIDS) missions, that is able to effectively mitigate the effects of systematic instrument calibration errors and inaccuracies in the original photon source within the forward model. Results are presented from end-to-end simulations that convolved simulated airglow profiles with the expected instrument measurement response to produce profiles that were inverted with the algorithm to return data products for comparison to truth. Simulations of measurements over a representative ICON orbit show the algorithm is able to reproduce hmF2 values to better than 5 km accuracy, and NmF2 to better than 12% accuracy over a 12-second integration, and demonstrate that the ICON EUV instrument and daytime ionosphere algorithm can meet the ICON science objectives which require 20 km vertical resolution in hmF2 and 18% precision in NmF2.  相似文献   
37.
Panning  Mark P.  Lognonné  Philippe  Bruce Banerdt  W.  Garcia  Raphaël  Golombek  Matthew  Kedar  Sharon  Knapmeyer-Endrun  Brigitte  Mocquet  Antoine  Teanby  Nick A.  Tromp  Jeroen  Weber  Renee  Beucler  Eric  Blanchette-Guertin  Jean-Francois  Bozdağ  Ebru  Drilleau  Mélanie  Gudkova  Tamara  Hempel  Stefanie  Khan  Amir  Lekić  Vedran  Murdoch  Naomi  Plesa  Ana-Catalina  Rivoldini  Atillio  Schmerr  Nicholas  Ruan  Youyi  Verhoeven  Olivier  Gao  Chao  Christensen  Ulrich  Clinton  John  Dehant  Veronique  Giardini  Domenico  Mimoun  David  Thomas Pike  W.  Smrekar  Sue  Wieczorek  Mark  Knapmeyer  Martin  Wookey  James 《Space Science Reviews》2017,211(1-4):611-650
Space Science Reviews - The InSight lander will deliver geophysical instruments to Mars in 2018, including seismometers installed directly on the surface (Seismic Experiment for Interior Structure,...  相似文献   
38.
Space Science Reviews - Interstellar dust from the Local Interstellar Cloud was detected unambiguously for the first time in 1992&nbsp;(Grün et&nbsp;al. in Nature 362:428–430,...  相似文献   
39.
40.
SWAN is the first space instrument dedicated to the monitoring of the latitude distribution of the solar wind by the Lyman alpha method. The distribution of interstellar H atoms in the solar system is determined by their destruction during ionization charge-exchange with solar wind protons. Maps of sky Ly-α emission have been recorded regularly since launch. The upwind maximum emission region deviates strongly from the pattern that would be expected from a solar wind that is constant with latitude. It is divided in two lobes by a depression aligned with the solar equatorial plane, called the Lyman-alpha groove, due to enhanced ionization along the neutral sheet where the slow and dense solar wind is concentrated. The groove (or the anisotropy) is more pronounced in 1997 than in 1996, but it then decreases between 1997 and 1998. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号