首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18414篇
  免费   120篇
  国内免费   170篇
航空   10231篇
航天技术   5332篇
综合类   291篇
航天   2850篇
  2021年   173篇
  2018年   232篇
  2016年   182篇
  2014年   468篇
  2013年   549篇
  2012年   463篇
  2011年   627篇
  2010年   445篇
  2009年   791篇
  2008年   840篇
  2007年   409篇
  2006年   451篇
  2005年   417篇
  2004年   438篇
  2003年   527篇
  2002年   474篇
  2001年   580篇
  2000年   355篇
  1999年   457篇
  1998年   424篇
  1997年   317篇
  1996年   369篇
  1995年   438篇
  1994年   411篇
  1993年   358篇
  1992年   314篇
  1991年   252篇
  1990年   237篇
  1989年   383篇
  1988年   200篇
  1987年   234篇
  1986年   222篇
  1985年   636篇
  1984年   512篇
  1983年   404篇
  1982年   484篇
  1981年   610篇
  1980年   244篇
  1979年   188篇
  1978年   189篇
  1977年   146篇
  1976年   156篇
  1975年   186篇
  1974年   180篇
  1973年   161篇
  1972年   188篇
  1971年   148篇
  1970年   143篇
  1969年   147篇
  1967年   142篇
排序方式: 共有10000条查询结果,搜索用时 187 毫秒
1.
This paper presents the mission design for a CubeSat-based active debris removal approach intended for transferring sizable debris objects from low-Earth orbit to a deorbit altitude of 100 km. The mission consists of a mothership spacecraft that carries and deploys several debris-removing nanosatellites, called Deorbiter CubeSats. Each Deorbiter is designed based on the utilization of an eight-unit CubeSat form factor and commercially-available components with significant flight heritage. The mothership spacecraft delivers Deorbiter CubeSats to the vicinity of a predetermined target debris, through performing a long-range rendezvous maneuver. Through a formation flying maneuver, the mothership then performs in-situ measurements of debris shape and orbital state. Upon release from the mothership, each Deorbiter CubeSat proceeds to performing a rendezvous and attachment maneuver with a debris object. Once attached to the debris, the CubeSat performs a detumbling maneuver, by which the residual angular momentum of the CubeSat-debris system is dumped using Deorbiter’s onboard reaction wheels. After stabilizing the attitude motion of the combined Deorbiter-debris system, the CubeSat proceeds to performing a deorbiting maneuver, i.e., reducing system’s altitude so much so that the bodies disintegrate and burn up due to atmospheric drag, typically at around 100 km above the Earth surface. The attitude and orbital maneuvers that are planned for the mission are described, both for the mothership and Deorbiter CubeSat. The performance of each spacecraft during their operations is investigated, using the actual performance specifications of the onboard components. The viability of the proposed debris removal approach is discussed in light of the results.  相似文献   
2.
With the rapid growth of the number of Earth observation satellite (EOS) supporting critical applications, it is required to improve the security techniques to protect the sensitive data and images during the transmission between the satellites and the ground stations. This paper introduces a new satellite image encryption algorithm based on the Linear Feedback Shift Register (LFSR) generator, SHA 512 hash function, hyperchaotic systems, and Josephus problem. LFSR generates a matrix that is used to construct the 512-bits value of the hash function. These bits are used to set the initial values and parameters of the proposed encryption algorithm. Firstly, the six dimensions (6-D) hyperchaotic system is divided into three parts, where every two equations are considered as one part. Secondly, the 1-D hyperchaotic logistic-tent system is considered as the controller to select one part. The selected part is used to generate a matrix that is XORed with the original image. Thirdly, the scrambling operation by Josephus sequences is applied to the output of the previous step by scrambling the rows and the columns according to the selected part to produce the pre-encrypted image. Finally, if the number of iterations is less than the required number which is considered as a parameter of the secret key, the previous operations will be repeated in the pre-encrypted image; otherwise, the pre-encrypted image is considered as the final cipher image. Experimental and analyses results show that the proposed algorithm has good performance in terms of high level of security, large enough key-space, tolerance to Single Event Upsets (SEU) as well as low time complexity.  相似文献   
3.
为突破结冰风洞对翼型模型尺寸的限制,提出了一种新的混合翼型设计方法,可使用一套混合翼型模拟原始翼型在不同迎角下的结冰试验,弥补了以往混合翼型只能在单个设计迎角下使用的缺陷。方法采用多段翼的形式设计混合翼型,以多目标迎角等结冰试验条件作为设计输入,优化设计主翼外形和襟翼的位置、偏转角度,利用襟翼位置和偏转角度的变化实现混合翼型和原始翼型前缘表面的压力系数在不同迎角下能够保持一致,继而保证前缘结冰外形的一致性。设计的混合翼型较原始翼型弦长减小接近40%,在冰风洞中对混合翼型和原始翼型在目标结冰条件下进行试验,对比结果显示,在选取的多个目标迎角下,混合翼型和原始翼型二维截面的结冰外形基本一致,提出的混合翼型设计方法能够有效的模拟原始翼型在不同迎角下的结冰外形。  相似文献   
4.
Ballistic design of solar sailing missions in the solar system is composed of defining the design parameters, the control programs, and the trajectories that provide performance goals of a flight. The use of a solar sail spacecraft imposes specific restrictions on mission parameters that include the degradation limit on the flight duration, the maximum temperature of solar sail's surface, the minimum distance from the Sun, the maximum angular velocity of the spacecraft's rotation and others.Many authors considered the impact of these restrictions on the design of the mission separately, but they used a sophisticated method of finding the exact optimal motion control or applied the most straightforward laws of motion control. This paper uses local-optimal control laws at the complete mathematical models of motion and functioning of solar sail spacecraft to describe a technique of designing interplanetary missions. The described method avoids the need to obtain an accurate optimal solution to the control problem and does not cause significant computational difficulties.  相似文献   
5.
The theoretical analysis of the motion of natural space debris near the stable Earth-Moon Lagrange Points, L4 and L5, is presented with a focus on the potential debris risks to spacecraft operating near these points. Specifically, the research formulates a debris propagation model using four-body dynamics, then applies candidate probabilistic survivability models to a notional spacecraft operating at the L4 and L5 Lagrange points to quantify the collision risks to the spacecraft from natural debris particles. Of the survivability models implemented, the natural debris collision risks to spacecraft survivability are found to be incredibly low, but mitigation strategies to reduce the risk further are identified in this study. Overall, research into stable Lagrange point natural debris propagation improves understanding of the collision risks posed by the naturally occurring Kordylewski clouds and enhances operational planning for Lagrange point space missions.  相似文献   
6.
The results of numerical solution of the wave equations for the oblique incidence of whistling electromagnetic waves upon the night ionosphere from above have been obtained and analyzed. In the studied region of altitudes, within the wavelength scale, charged particle concentration varies drastically, and damping caused by collisions between the charged and neutral particles decreases considerably. Below, the sharp lower boundary of the ionosphere, the refractive index of the whistler wave approaches unity, and plasma turbulence transform into atmospheric electromagnetic waves. The dependences of the whistler reflection factor are found in terms of energy and horizontal magnetic component of the electromagnetic wave near the Earth’s surface on the frequency and the wave vector transverse component for the plain-layered medium model at two values of latitude. Strong dependences have been found on the wave angle of incidence and frequency. At rather small angles of incidence, the wave disturbances reach the Earth’s surface, and the module of reflection coefficient logarithm is in the range of 0.4–1. At large angles of incidence, the reflection coefficient module varies over a wide range depending on specific conditions. The obtained results explain the absence of oscillation modes of plasma magnetosphere maser in the night magnetosphere.  相似文献   
7.
The paper presents the research results of the effect of a capacitor energy storage device configuration on the specific characteristics of advanced modern propulsion systems based on the ablative pulsed plasma thrusters (APPT). These thrusters are designed to perform specific tasks within the small spacecrafts with the onboard power capacity up to 200 W.  相似文献   
8.
In this research, it is presented the daytime amplitude scintillations recorded at VHF frequency (244 MHz) at an Indian low-latitude station, Waltair (17.7°N, 83.3°E) during seven continuous years (1997–2003). Contrary to the nighttime scintillation seasonal trends, the occurrence of daytime scintillations maximizes during summer followed by winter and the equinox seasons. The fade depths, scintillation indices and the patch durations of daytime scintillations are meager when compared with their nighttime counterparts. A co-located digital high frequency (HF) ionosonde radar confirms the presence of sporadic (Es) layers when daytime scintillations are observed. The presence of daytime scintillations is evident when the critical frequency of the Es-layer (foEs) is ≥4 MHz and Es-layers are characterized by a highly diffuse range spread Es echoes as can be seen on ionograms. It is surmised that the gradient drift instability (GDI) seems to be the possible mechanism for the generation of these daytime scintillations. It is quite likely that the spread Es-F-layer coupling is done through polarization electric fields (Ep) that develop inside the destabilized patches of sporadic E layers, which are mapped up to the F region along the field lines as to initiate the daytime scintillations through the GDI mechanism. Further, the presence of additional stratification of ionosphere F-layer, popularly known as the F3-layer, is observed on ionograms once the Es-layers and daytime scintillations are ceased.  相似文献   
9.
Performance of SARAL/AltiKa mission has been evaluated within 2016 altimeter calibration/validation framework in Persian Gulf through three campaigns conducted in the offshore waters of Sajafi, Imam Hassan and Kangan Ports, while the altimeter overflew the passes 470, 111 and 25 on 13 Feb, 7 March and 17 June 2016, respectively. As the preparation, a lightweight buoy was equipped with a GNSS receiver/choke-ring antenna and a MEMS-based IMU to measure independent datasets in the field operations. To obtain accurate sea surface height (SSH) time series, the offset of the onboard antenna from the equilibrium sea level was predetermined through surveying operations as the buoy was deploying in the onshore waters of Kangan Port. Accordingly, the double-difference carrier phase observations have been processed via the Bernese GPS Software v. 5.0 so as to provide the GNSS-derived time series at the comparison points of the calibration campaigns, once the disturbing effects due to the platform tilt and heave have been eliminated. Owing to comparing of the SSH time series and the associating altimetry 1?Hz GDR-T datasets, the calibration/validation of the SARAL/AltiKa has been performed in the both cases of radiometer and ECMWF wet troposphere corrections so as to identify potential land contamination. An agreement of the present findings in comparison with those attained in other international calibrations sites confirms the promising feasibility of Persian Gulf as a new dedicated site for calibration/validation of ongoing and future altimetry missions.  相似文献   
10.
In the paper, the problem of designing interplanetary trajectories with several swing-bys and deep-space maneuvers is solved using the method of virtual trajectories developed by the authors. The algorithms for the calculation of both heliocentric and planetocentric trajectory arcs are presented, including the case of resonant trajectories. The results of applying the method of virtual trajectories to the problem of designing an interplanetary transfer to Jupiter are given and compared with the baseline trajectories for the Juno, Europa Clipper, and Laplace missions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号