首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110篇
  免费   2篇
  国内免费   4篇
航空   43篇
航天技术   38篇
航天   35篇
  2021年   6篇
  2019年   6篇
  2018年   10篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   10篇
  2013年   18篇
  2012年   2篇
  2011年   7篇
  2010年   2篇
  2009年   5篇
  2008年   3篇
  2007年   2篇
  2006年   1篇
  2005年   5篇
  2004年   2篇
  2003年   4篇
  2002年   4篇
  2001年   4篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1987年   2篇
  1984年   1篇
  1983年   1篇
  1981年   4篇
  1978年   1篇
  1975年   1篇
  1972年   1篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
排序方式: 共有116条查询结果,搜索用时 31 毫秒
11.
12.
We studied solar wind observations of five different spacecraft: Helios 1, Helios 2, IMP-8, Voyager 1 and Voyager 2, from November 1977 to February 1978. In this period the large-scale dynamics of the solar wind near of the ecliptic plane was characterized by transient forward shocks (TFSs), ejecta, unstable corotating interaction regions (CIRs), and complex and variable magnetic sector structures. We identified 12 forward shock events of different origin. We did not find any clear tendency of the shock parameters with heliocentric distance nor longitudinal angle, but comparing the observations of each shock event we found local variations in the shock strength and the mean propagation velocities from one spacecraft to another. These unsystematic variations indicate that there were local deformations of the shock fronts, which we attribute to the inhomogenuos solar wind structure that affects the shock propagation. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
13.
14.
15.
The direct Bayesian admissible region approach is an a priori state free measurement association and initial orbit determination technique for optical tracks. In this paper, we test a hybrid approach that appends a least squares estimator to the direct Bayesian method on measurements taken at the Zimmerwald Observatory of the Astronomical Institute at the University of Bern. Over half of the association pairs agreed with conventional geometric track correlation and least squares techniques. The remaining pairs cast light on the fundamental limits of conducting tracklet association based solely on dynamical and geometrical information.  相似文献   
16.
The precipitable water vapor is one of the most active gases in the atmosphere which strongly affects the climate. China's second-generation polar orbit meteorological satellite FY-3A equipped with a Medium Resolution Spectral Imager (MERSI) is able to detect atmospheric water vapor. In this paper, water vapor data from AERONET, radiosonde and MODIS were used to validate the accuracy of the MERSI water vapor product in the different seasons and climatic regions of East Asia. The results show that the values of MERSI water vapor product are relatively lower than that of the other instruments and its accuracy is generally lower. The mean bias (MB) was ?0.8 to ?12.7?mm, the root mean square error (RMSE) was 2.2–17.0?mm, and the mean absolute percentage error (MAPE) varied from 31.8% to 44.1%. On the spatial variation, the accuracy of MERSI water vapor product in a descending order was from North China, West China, Japan -Korea, East China, to South China, while the seasonal variation of accuracy was the best for winter, followed by spring, then in autumn and the lowest in summer. It was found that the errors of MERSI water vapor product was mainly due to the low accuracy of radiation calibration of the MERSI absorption channel, along with the inaccurate look-up table of apparent reflectance and water vapor within the water vapor retrieved algorithm. In addition, the surface reflectance, the mixed pixels of image cloud, the humidity and temperature of atmospheric vertical profile and the haze were also found to have affected the accuracy of MERSI water vapor product.  相似文献   
17.
We have developed a new approach towards a new database of the ionospheric parameter foF2. This parameter, being the frequency of the maximum of the ionospheric electronic density profile and its main modeller, is of great interest not only in atmospheric studies but also in the realm of radio propagation. The current databases, generated by CCIR (Committee Consultative for Ionospheric Radiowave propagation) and URSI (International Union of Radio Science), and used by the IRI (International Reference Ionosphere) model, are based on Fourier expansions and have been built in the 60s from the available ionosondes at that time. The main goal of this work is to upgrade the databases by using new available ionosonde data. To this end we used the IRI diurnal/spherical expansions to represent the foF2 variability, and computed its coefficients by means of a genetic algorithm (GA). In order to test the performance of the proposed methodology, we applied it to the South American region with data obtained by RAPEAS (Red Argentina para el Estudio de la Atmósfera Superior, i.e. Argentine Network for the Study of the Upper Atmosphere) during the years 1958–2009. The new GA coefficients provide a global better fit of the IRI model to the observed foF2 than the CCIR coefficients. Since the same formulae and the same number of coefficients were used, the overall integrity of IRI’s typical ionospheric feature representation was preserved. The best improvements with respect to CCIR are obtained at low solar activities, at large (in absolute value) modip latitudes, and at night-time. The new method is flexible in the sense that can be applied either globally or regionally. It is also very easy to recompute the coefficients when new data is available. The computation of a third set of coefficients corresponding to days of medium solar activity in order to avoid the interpolation between low and high activities is suggested. The same procedure as for foF2 can be perfomed to obtain the ionospheric parameter M(3000)F2.  相似文献   
18.
Self-organization is a property of dissipative nonlinear processes that are governed by a global driving force and a local positive feedback mechanism, which creates regular geometric and/or temporal patterns, and decreases the entropy locally, in contrast to random processes. Here we investigate for the first time a comprehensive number of (17) self-organization processes that operate in planetary physics, solar physics, stellar physics, galactic physics, and cosmology. Self-organizing systems create spontaneous “order out of randomness”, during the evolution from an initially disordered system to an ordered quasi-stationary system, mostly by quasi-periodic limit-cycle dynamics, but also by harmonic (mechanical or gyromagnetic) resonances. The global driving force can be due to gravity, electromagnetic forces, mechanical forces (e.g., rotation or differential rotation), thermal pressure, or acceleration of nonthermal particles, while the positive feedback mechanism is often an instability, such as the magneto-rotational (Balbus-Hawley) instability, the convective (Rayleigh-Bénard) instability, turbulence, vortex attraction, magnetic reconnection, plasma condensation, or a loss-cone instability. Physical models of astrophysical self-organization processes require hydrodynamic, magneto-hydrodynamic (MHD), plasma, or N-body simulations. Analytical formulations of self-organizing systems generally involve coupled differential equations with limit-cycle solutions of the Lotka-Volterra or Hopf-bifurcation type.  相似文献   
19.
Space Science Reviews - Particles are accelerated to very high, non-thermal energies in solar and space plasma environments. While energy spectra of accelerated electrons often exhibit a power law,...  相似文献   
20.
We present a Python-based data reduction pipeline package (PLP) for the Immersion GRating INfrared Spectrograph (IGRINS), an instrument that covers the complete H- and K-bands in one exposure with a spectral resolving power of 40,000. The reduction steps carried out by the PLP include flat-fielding, background removal, order extraction, distortion correction, wavelength calibration, and telluric correction using spectra of A type standard stars. As the spectrograph has no moving parts, the PLP automatically reduces the data using predefined functions for the processes of order extraction, distortion correction, and wavelength calibration. Before the telluric correction of the target spectra, the intrinsic hydrogen absorption features of the standard A star are removed with a Gaussian fitting algorithm. The final result is the flux of the target as a function of wavelength. Users can customize the predefined functions for the extraction of the spectrum from the echellogram and adjust the parameters for the fitting functions for the spectra of celestial objects, using “fine-tuning” options, as necessary. Presently, the PLP produces the best results for point-source targets.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号