首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
航空   1篇
航天技术   2篇
航天   1篇
  2018年   1篇
  2014年   2篇
  2003年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
We present a Python-based data reduction pipeline package (PLP) for the Immersion GRating INfrared Spectrograph (IGRINS), an instrument that covers the complete H- and K-bands in one exposure with a spectral resolving power of 40,000. The reduction steps carried out by the PLP include flat-fielding, background removal, order extraction, distortion correction, wavelength calibration, and telluric correction using spectra of A type standard stars. As the spectrograph has no moving parts, the PLP automatically reduces the data using predefined functions for the processes of order extraction, distortion correction, and wavelength calibration. Before the telluric correction of the target spectra, the intrinsic hydrogen absorption features of the standard A star are removed with a Gaussian fitting algorithm. The final result is the flux of the target as a function of wavelength. Users can customize the predefined functions for the extraction of the spectrum from the echellogram and adjust the parameters for the fitting functions for the spectra of celestial objects, using “fine-tuning” options, as necessary. Presently, the PLP produces the best results for point-source targets.  相似文献   
2.
We present medium resolution near-infrared host galaxy spectra of low redshift quasars, PG 0844+3490844+349 (z = 0.064), PG 1226+0231226+023 (z = 0.158), and PG 1426+0151426+015 (z = 0.086). The observations were done by using the Infrared Camera and Spectrograph (IRCS) at the Subaru 8.2 m telescope. The full width at half maximum of the point spread function was about 0.3 arcsec by operations of an adaptive optics system, which can effectively resolve the quasar spectra from the host galaxy spectra. We spent up to several hours per target and developed data reduction methods to reduce the systematic noises of the telluric emissions and absorptions. From the obtained spectra, we identified absorption features of Mg I (1.503 μm), Si I (1.589 μm) and CO (6-3) (1.619 μm), and measured the velocity dispersions of PG 0844+3490844+349 to be 132 ± 110 km s−1 and PG 1426+0151426+015 to be 264 ± 215 km s−1. By using an MBH–σMBHσ relation of elliptical galaxies, we derived the black hole (BH) mass of PG 0844+3490844+349, log(MBH/M)=7.7±5.5log(MBH/M)=7.7±5.5 and PG 1426+015,log(MBH/M)=9.0±7.51426+015,log(MBH/M)=9.0±7.5. These values are consistent with the BH mass values from broad emission lines with an assumption of a virial factor of 5.5.  相似文献   
3.
The problem of coherence violation in stroboscopic ranging with a high resolution in the range due to mutual phase instability of probing and reference radio signals has been considered. It has been shown that the violation of coherence in stroboscopic ranging systems is equivalent to the action of modulating interface and leads to a decrease in the system sensitivity. Requirements have been formulated for the coherence of reference generators in the stroboscopic processing system. The results of statistical modeling have been presented. It was shown that, in the current state of technology with stability of the frequencies of the reference generators, the achieved coherence is sufficient to probe asteroids with super-resolving signals in the range of up to 70 million kilometers. In this case, the dispersion of the signal in cosmic plasma limits the value of the linear resolution of the asteroid details at this range by the value of ~2.7 m. Comparison with the current radar resolution of asteroids has been considered, which, at the end of 2015, were ~7.5 m in the range of ~7 million kilometers.  相似文献   
4.
The SeaWinds Scatterometer is a Ku-band Earth orbiting remote sensing radar. It has a 1 m dish antenna shared by two beams with respective nadir look angles of 40 and 46 deg, scanning azimuthally to provide greater than 90% daily coverage of the Earth at an altitude of 800 km. The first sensor was launched in 1999 and produces sea surface wind field to 2 m/s accuracy at 25 km resolution. The design and calibration of the SeaWinds radar is described here.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号