首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  国内免费   1篇
航空   4篇
航天技术   1篇
  2014年   1篇
  2013年   1篇
  2005年   1篇
  2004年   1篇
  1999年   1篇
排序方式: 共有5条查询结果,搜索用时 484 毫秒
1
1.
We optimize the performance of multiframe target detection (MFTD) schemes under extended Neyman-Pearson (NP) criteria. Beyond the per-track detection performance for a specific target path in conventional MFTD studies, we optimize the overall detection performance which is averaged over all the potential target paths. It is shown that the overall MFTD performance is limited by the mobility of a target and also that optimality of MFTD performance depends on how fully one ran exploit the information about the target dynamics. We assume a single target situation and then present systematic optimization by formulating the MFTD problems as binary composite hypotheses testing problems. The resulting optimal solutions suggest computationally efficient implementation algorithms which are similar to the Viterbi algorithm for trellis search. The optimal performances for some typical types of target dynamics are evaluated via Monte-Carlo simulation  相似文献   
2.
The Cloud Profiling Radar (CPR) for the upcoming CloudSat Mission is a spaceborne 94-GHz nadir-looking radar that measures the power backscattered by clouds as a function of distance from the radar. This sensor is expected to provide cloud measurements at a 500-m vertical resolution and a 1.5 km horizontal resolution. CPR will operate in a short-pulse mode and will yield measurements at a minimum detectable sensitivity of -28 dBZ.  相似文献   
3.
Radar: The Cassini Titan Radar Mapper   总被引:1,自引:0,他引:1  
The Cassini RADAR instrument is a multimode 13.8 GHz multiple-beam sensor that can operate as a synthetic-aperture radar (SAR) imager, altimeter, scatterometer, and radiometer. The principal objective of the RADAR is to map the surface of Titan. This will be done in the imaging, scatterometer, and radiometer modes. The RADAR altimeter data will provide information on relative elevations in selected areas. Surfaces of the Saturn’s icy satellites will be explored utilizing the RADAR radiometer and scatterometer modes. Saturn’s atmosphere and rings will be probed in the radiometer mode only. The instrument is a joint development by JPL/NASA and ASI. The RADAR design features significant autonomy and data compression capabilities. It is expected that the instrument will detect surfaces with backscatter coefficient as low as −40 dB.RADAR Team LeaderThis revised version was published online in July 2005 with a corrected cover date.  相似文献   
4.
This paper focuses on a method to solve structural optimization problems using particle swarm optimization (PSO), surrogate models and Bayesian statistics. PSO is a random/stochastic search algorithm designed to find the global optimum. However, PSO needs many evaluations compared to gradient-based optimization. This means PSO increases the analysis costs of structural optimization. One of the methods to reduce computing costs in stochastic optimization is to use approximation techniques. In this work, surrogate models are used, including the response surface method (RSM) and Kriging. When surrogate models are used, there are some errors between exact values and approximated values. These errors decrease the reliability of the optimum values and discard the realistic approximation of using surrogate models. In this paper, Bayesian statistics is used to obtain more reliable results. To verify and confirm the efficiency of the proposed method using surrogate models and Bayesian statistics for stochastic structural optimization, two numerical examples are optimized, and the optimization of a hub sleeve is demonstrated as a practical problem.  相似文献   
5.
We present medium resolution near-infrared host galaxy spectra of low redshift quasars, PG 0844+3490844+349 (z = 0.064), PG 1226+0231226+023 (z = 0.158), and PG 1426+0151426+015 (z = 0.086). The observations were done by using the Infrared Camera and Spectrograph (IRCS) at the Subaru 8.2 m telescope. The full width at half maximum of the point spread function was about 0.3 arcsec by operations of an adaptive optics system, which can effectively resolve the quasar spectra from the host galaxy spectra. We spent up to several hours per target and developed data reduction methods to reduce the systematic noises of the telluric emissions and absorptions. From the obtained spectra, we identified absorption features of Mg I (1.503 μm), Si I (1.589 μm) and CO (6-3) (1.619 μm), and measured the velocity dispersions of PG 0844+3490844+349 to be 132 ± 110 km s−1 and PG 1426+0151426+015 to be 264 ± 215 km s−1. By using an MBH–σMBHσ relation of elliptical galaxies, we derived the black hole (BH) mass of PG 0844+3490844+349, log(MBH/M)=7.7±5.5log(MBH/M)=7.7±5.5 and PG 1426+015,log(MBH/M)=9.0±7.51426+015,log(MBH/M)=9.0±7.5. These values are consistent with the BH mass values from broad emission lines with an assumption of a virial factor of 5.5.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号