首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A shape of the satellite’s solar sail membrane is essential for unloading angular momentum in the three-axis stabilized attitude control system because the three-dimensional solar sail can receive solar radiation pressure from arbitrary directions. In this paper, the objective is the shape optimization of a three-dimensional membrane-structured solar sail using the angular momentum unloading strategy. We modelled and simulated the solar radiation pressure torque, for unloading angular momentum. Using the simulation system, since the unloading angular momentum rate is maximized, the shape of the three-dimensional solar sail was optimized using a Genetic algorithm and Sequential Quadratic Programming. The unloading velocity in the optimized shaped solar sail was greatly improved with respect to a conventional flat or pyramid solar sail.  相似文献   

2.
This paper deals with the attitude control performance analysis of a square solar sail. Two sliding masses are moved inside and along mast lanyards for the control around the pitch and yaw axes. An optimal linear controller with a feedback and a feedforward part is used to control the attitude of the sail. Numerical simulations have been carried out to investigate the system’s ability of performing precise and near-time-optimal reorientation maneuvers as well as the controller’s sensitivity with respect to the sail parameters, as the center of pressure to the center of mass offset or the sail’s size. Our simulation results are finally shown and discussed.  相似文献   

3.
A spinning solar sail IKAROS’s membrane is estimated to unexpectedly deform into an inverted pyramid shape due to thin-film devices with curvature, such as thin-film solar cells and steering devices on the membrane. It is important to investigate the deformation caused by the curved thin-film devices and predict the sail shape because the out-of-plane deformation greatly affects solar radiation pressure (SRP) and SRP torque. The purpose of this paper is to clarify the relationship between the global shape and orientation and position of curved thin-film devices and to evaluate SRP torque on the global shape using finite element analysis. The global shape is evaluated based on the out-of-plane displacement and the SRP torque. When the curved thin-film devices make the membrane shrink in the circumferential, diagonal, and radial direction, the sail deforms into a pyramid shape, an inverted pyramid one, and a saddle one, respectively. The saddle shape is more desirable for solar sails than the inverted pyramid shape and the pyramid one from the viewpoint of shape stability to SRP and control of SRP torque in the normal direction of the sail (windmill torque). The position of the thin-film device tends to increase the absolute value of windmill torque when it is biased circumferentially from the petal central axis. The suggested design principles for the arrangement of thin-film devices is that the curved thin-film devices should be directed so that the sail shrinks in the radial direction in order to deform the sail into a saddle shape with high shape stability, and the position of the thin-film devices should be biased in the circumferential direction paying attention to the absolute value of windmill torque to determine the direction of windmill torque.  相似文献   

4.
The orbit of a solar sail can be controlled by changing the attitude of the spacecraft. In this study, we consider the spinning solar power sail IKAROS (Interplanetary Kite-craft Accelerated by Radiation Of the Sun), which is managed by Japan Aerospace Exploration Agency (JAXA). The IKAROS attitude, i.e., the direction of its spin-axis, is nominally controlled by the rhumb-line control method. By utilizing the solar radiation torque, however, we are able to change the direction of the spin-axis by only controlling its spin rate. With this spin rate control, we can also control indirectly the solar sail’s trajectory. The main objective of this study is to construct the orbit control strategy of the solar sail via the spin-rate control method. We evaluate this strategy in terms of its propellant consumption compared to the rhumb-line control method. Finally, we present the actual flight attitude data of IKAROS and the change of its trajectory.  相似文献   

5.
Literature on solar sailing has thus far mostly considered solar radiation pressure (SRP) as the only contribution to sail force. However, considering a sail in a planetary mission scenario, a new contribution can be added. Since the planet itself emits radiation, this generates a radial planetary radiation pressure (PRP) that is also exerted on the sail. Hence, this work studies the combined effects of both SRP and PRP on a sail for two case studies, i.e. Earth and Venus. In proximity of the Earth, the effect of PRP can be significant under specific conditions. Around Venus, instead, PRP is by far the dominating contribution. These combined effects have been studied for single- and double-sided reflective coating and including eclipse. Results show potential increase in the net acceleration and a change in the optimal attitude to maximise the acceleration in a given direction. Moreover, an increasing semi-major axis manoeuvre is shown with and without PRP, to quantify the difference on a real-case scenario.  相似文献   

6.
针对高面质比航天器可以利用太阳光压进行轨道控制的特点,本文提出一种太阳帆航天器编队构型维持和重构的方法.该方法通过控制主从航天器太阳帆姿态角和反射系数,调整主从航天器之间的光压差,产生抵消编队成员间相对运动受到摄动差或进行轨道机动时所需的连续小推力,从而实现编队构型的维持和重构.仿真结果表明,在主航天器太阳帆的姿态角和反射系数相对固定的条件下,对于太阳同步轨道上的高面质比太阳帆航天器编队,使用滑模控制方法,能够调整编队中从航天器太阳帆的姿态角和反射系数产生推力抵消摄动力影响,达到长期维持太阳帆航天器编队构型的目的;通过开环控制方法,能够调整编队中从航天器太阳帆的姿态角和反射系数产生连续小推力,在较长时间周期内实现编队重构.  相似文献   

7.
Passive attitude stability criteria of a solar sail whose membrane surface is axisymmetric are studied in this paper under a general SRP model. This paper proves that arbitrary attitude equilibrium position can be designed through adjusting the deviation between the pressure center and the mass center of the sail. The linearized method is applied to inspect analytically the stability of the equilibrium point from two different points of views. The results show that the attitude stability depends on the membrane surface shape and area. The results of simulation with full dynamic equations confirm that the two stability criteria are effective in judging the attitude stability for axisymmetric solar sail. Several possible applications of the study are also mentioned.  相似文献   

8.
This paper discusses the orbit and attitude dynamics of a solar sail, and gives the sufficient conditions of a stable orbit and attitude coupled system. The stability of the coupled system is determined by the orbit stability and attitude stability. Based on the sufficient conditions, a spin-stabilized solar sail of cone configuration is proposed to evolve in the heliocentric displaced orbit. For this kind of configuration, the attitude is always stable by spinning itself. The orbit stability depends on the orbit parameters of the heliocentric displaced orbit, the ratio of the orbit radius to displaced distance and orbit angular velocity. If the center of mass and center of pressure overlap, it can be proved that the coupled system is stable when the orbit parameters are chosen in the stable region. When the center of mass and center of pressure offset exists, the stability of the coupled system can not be judged. A numerical example is given and the result shows that both the orbit and attitude are stable for the case.  相似文献   

9.
The heliocentric orbital dynamics of a spacecraft propelled by a solar sail is affected by some uncertainty sources, including possible inaccuracies in the measurement of the sail film optical properties. Moreover, the solar radiation pressure, which is responsible for the solar sail propulsive acceleration generation, is not time-constant and is subject to fluctuations that are basically unpredictable and superimposed to the well-known 11-year solar activity cycle. In this context, this work aims at investigating the effects of such uncertainties on the actual heliocentric trajectory of a solar sail by means of stochastic simulations performed with a generalized polynomial chaos procedure. The numerical results give an estimation of their impact on the actual heliocentric trajectory and identify whether some of the uncertainty sources are more relevant than others. This is a fundamental information for directing more accurate theoretical and experimental efforts toward the most important parameters, in order to obtain an accurate knowledge of the solar sail thrust vector characteristics and, eventually, of the spacecraft heliocentric position.  相似文献   

10.
Current control approaches for solar sail station-keeping on libration point orbits have not considered the degradation of the sail’s optical properties. However, significant optical degradation could lead to poor station-keeping performance or even complete failure. This paper presents an integrated guidance and control strategy to address this problem by updating the reference orbit based on in situ estimation. An exponential optical degradation model is incorporated into the solar radiation acceleration model, and an on-line reference orbit update approach is incorporated into the station-keeping, coupled with an active disturbance rejection controller. The reflection coefficient is estimated on-line and the reference orbit is updated discretely when the optical properties have degraded by a prescribed amount. This strategy provides discrete updates to the reference orbits such that the perturbation due to the optical degradation is maintained within a small range. These smaller perturbations can be dealt with by the controller’s robustness and station-keeping can be sustained for long durations even in the presence of large optical degradation.  相似文献   

11.
CubeSail is a nano-solar sail mission based on the 3U CubeSat standard, which is currently being designed and built at the Surrey Space Centre, University of Surrey. CubeSail will have a total mass of around 3 kg and will deploy a 5 × 5 m sail in low Earth orbit. The primary aim of the mission is to demonstrate the concept of solar sailing and end-of-life de-orbiting using the sail membrane as a drag-sail. The spacecraft will have a compact 3-axis stabilised attitude control system, which uses three magnetic torquers aligned with the spacecraft principle axis as well as a novel two-dimensional translation stage separating the spacecraft bus from the sail. CubeSail’s deployment mechanism consists of four novel booms and four-quadrant sail membranes. The proposed booms are made from tape-spring blades and will deploy the sail membrane from a 2U CubeSat standard structure. This paper presents a systems level overview of the CubeSat mission, focusing on the mission orbit and de-orbiting, in addition to the deployment, attitude control and the satellite bus.  相似文献   

12.
A torus-shaped sail consists of a reflective membrane attached to an inflatable torus-shaped rim. The sail’s deployment from its stowed configuration is initiated by introducing inflation pressure into the toroidal rim with an attached circular flat membrane coated by heat-sensitive materials that undergo thermal desorption (TD) from a solid to a gas phase. Our study of the deployment and acceleration of the sail is split into three steps: at a particular heliocentric distance a torus-shaped sail is deployed by a gas inflated into the toroidal rim and the membrane is kept flat by the pressure of the gas; under heating by solar radiation, the membrane coat undergoes TD and the sail is accelerated via TD of coating and solar radiation pressure (SRP); when TD ends, the sail utilizes thrust only from SRP. We study the stability of the torus-shaped sail and deflection and vibration of the flat membrane due to the acceleration by TD and SRP.  相似文献   

13.
For extrasolar space exploration it might be very convenient to take advantage of space environmental effects such as solar radiation heating to accelerate a solar sail coated by materials that undergo thermal desorption at a particular temperature. Thermal desorption can provide additional thrust as heating liberates atoms, embedded on the surface of the solar sail. We are considering orbital dynamics of a solar sail coated with materials that undergo thermal desorption at a specific temperature, as a result of heating by solar radiation at a particular heliocentric distance, and focus on two scenarios that only differ in the way the sail approaches the Sun. For each scenario once the perihelion is reached, the sail coat undergoes thermal desorption. When the desorption process ends, the sail then escapes the Solar System having the conventional acceleration due to solar radiation pressure. We study the dependence of a cruise speed of a solar sail on perihelion of the orbit where the solar sail is deployed. The following scenarios are considered and analyzed: (1) Hohmann transfer plus thermal desorption. In this scenario the sail would be carried as a payload to the perihelion with a conventional propulsion system by a Hohmann transfer from Earth’s orbit to an orbit very close to the Sun and then be deployed. Our calculations show that the cruise speed of the solar sail varies from 173?km/s to 325?km/s that corresponds to perihelion 0.3?AU and 0.1 AU, respectively. (2) Elliptical transfer plus Slingshot plus thermal desorption. In this scenario the transfer occurs from Earth’s orbit to Jupiter’s orbit; then a Jupiter’s fly-by leads to the orbit close to the Sun, where the sail is deployed and thermal desorption comes active. In this case the cruise speed of the solar sail varies from 187?km/s to 331?km/s depending on the perihelion of the orbit. Our study analyses and compares the different scenarios in which thermal desorption comes beside traditional propulsion systems for extrasolar space exploration.  相似文献   

14.
Solar sail halo orbits designed in the Sun-Earth circular restricted three-body problem (CR3BP) provide inefficient reference orbits for station-keeping since the disturbance due to the eccentricity of the Earth’s orbit has to be compensated for. This paper presents a strategy to compute families of halo orbits around the collinear artificial equilibrium points in the Sun-Earth elliptic restricted three-body problem (ER3BP) for a solar sail with reflectivity control devices (RCDs). In this non-autonomous model, periodic halo orbits only exist when their periods are equal to integer multiples of one year. Here multi-revolution halo orbits with periods equal to integer multiples of one year are constructed in the CR3BP and then used as seeds to numerically continue the halo orbits in the ER3BP. The linear stability of the orbits is analyzed which shows that the in-plane motion is unstable while the out-of-plane motion is neutrally stable and a bifurcation is identified. Finally, station-keeping is performed which shows that a reference orbit designed in the ER3BP is significantly more efficient than that designed in the CR3BP, while the addition of RCDs improve station-keeping performance and robustness to uncertainty in the sail lightness number.  相似文献   

15.
Detailed dynamic modeling of a solar sail requires recording of solar radiation pressure influence. A photon-solar sail is determined by the thrust value and the direction. We define the solar sail’s reflectivity depending on the film materials, the sail design and temperature, the thickness of multiple layers, and degradation factor, with a reasonable degree of accuracy. Thus, this work is devoted to the identification of optical characteristics of thin multilayer films in space flight conditions, i.e. to finding its reflectance, absorbance, and transmittance. In particular, the paper asks whether the solar sail simulates by a mathematical model of the optical characteristics of a multilayer epitaxial thin film. The temperature change effect and optical properties of solar sail degradation are considered as well. Solar sail flight from Earth to Mercury is designed as a simulation of the flight change in optical parameters.  相似文献   

16.
The purpose of this paper is to present a high performance solar sail attitude controller which uses ballast masses moving inside the sail’s booms as actuators and to demonstrate its ability of performing time efficient reorientation maneuvers. The proposed controller consists of a combination of a feedforward and a feedback controller, which takes advantage of the feedforward’s fast response and the feedback’s ability of responding to unpredicted disturbances. The feedforward controller considers the attitude dynamics of the sailcraft as well as the disturbance torque due to the center of pressure offset to the center of mass of the sailcraft. Additional disturbance torques, like those coming from the environment or from asymmetry of the spacecraft structure, are then handled by the feedback controller. Simulation performance results are finally compared against results available in the literature.  相似文献   

17.
The interaction between electromagnetic waves and matter is the working principle of a photon-propelled spacecraft, which extracts momentum from the solar radiation to obtain a propulsive acceleration. An example is offered by solar sails, which use a thin membrane to reflect the impinging photons. The solar radiation momentum may actually be transferred to matter by means of various optical phenomena, such as absorption, emission, or refraction. This paper deals with the novel concept of a refractive sail, through which the Sun’s light is refracted by crossing a film made of polymeric micro-prisms. The main feature of a refractive sail is to give a large transverse component of thrust even when the sail nominal plane is orthogonal to the Sun-spacecraft line. Starting from the recent literature results, this paper proposes a semi-analytical thrust model that estimates the characteristics of the propulsive acceleration vector as a function of the sail attitude angles. Such a mathematical model is then used to analyze a simplified Earth-Mars and Earth-Venus interplanetary transfer within an optimal framework.  相似文献   

18.
For precursor solar sail activities a strategy for a controlled deployment of large membranes was developed based on a combination of zig-zag folding and coiling of triangular sail segments spanned between crossed booms. This strategy required four autonomous deployment units that were jettisoned after the deployment is completed. In order to reduce the complexity of the system an adaptation of that deployment strategy is investigated.A baseline design for the deployment mechanisms is established that allows the deployment actuation from a central bus system in order to reduce the complexity of the system. The mass of such a sail craft will be slightly increased but its performance is still be reasonable for first solar sail missions.The presented design will be demonstrated on breadboard level showing the feasibility of the deployment strategy. The characteristic acceleration will be evaluated and compared to the requirements of certain proposed solar sail missions.  相似文献   

19.
In this work we focus on the dynamics of a solar sail in the Sun–Earth Elliptic Restricted Three-Body Problem with solar radiation pressure. The considered situation is the motion of a sail close to the L1 point, but displacing the equilibrium point with the sail so that it is possible to have continuous communication with the Earth. In previous works we derived a station keeping strategy for this situation but using the Circular RTBP as a model.  相似文献   

20.
输入成型法无法消除姿态机动过程中的柔性振动,残留的柔性振动将改变大柔性太阳帆航天器的结构参数,影响姿态机动的控制精度。为此,基于两种控制手段(作用于太阳帆中心的喷气和作用于支撑杆顶端的电推进)的组合,提出复合控制方法,以消除姿态机动过程中的柔性振动。采用将帆面质量等效到支撑杆的简化方法,建立太阳帆航天器姿态运动与柔性振动的耦合动力学模型,并从减小振动模态的外加激励出发,根据简化的动力学模型,得到了两种复合控制的设计方法:消除某一阶的柔性振动方法和减小前n(n>1)阶的柔性振动方法。仿真结果表明,相比输入成型法,第二种复合控制方法不但机动时间短,还能够将姿态机动过程中的柔性振动抑制到5%,使机动角度精度优于0.003°。由于仅利用已有的控制手段,复合控制方法算法简单,适合于实际应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号