首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Altimetry is now routinely used to monitor stage variations over rivers, including in the Amazon basin. It is desirable for hydrologic studies to be able to combine altimetry from different satellite missions with other hydrogeodesy datasets such as leveled gauges and watershed topography. One requirement is to accurately determine altimetry bias, which could be different for river studies from the altimetry calibrated for deep ocean or lake applications. In this study, we estimate the bias in the Envisat ranges derived from the ICE-1 waveform retracking, which are nowadays widely used in hydrologic applications. As a reference, we use an extensive dataset of altitudes of gauge zeros measured by GPS collocated at the gauges. The thirty-nine gauges are spread along the major tributaries of the Amazon basin. The methodology consists in jointly modeling the vertical bias and spatial and temporal slope variations between altimetry series located upstream and downstream of each gauge. The resulting bias of the Envisat ICE-1 retracked altimetry over rivers is 1.044 ± 0.212 m, revealing a significant departure from other Envisat calibrations or from the Jason-2 ICE-1 calibration.  相似文献   

2.
The in situ validation of the satellite altimeter sea surface heights is generally performed either at a few local points directly flown over by the satellites or using the global tide gauge network. A regional in situ calibration method was developed by NOVELTIS in order to monitor the altimeter data quality in a perimeter of several hundred kilometres around a given in situ calibration site. The primary advantage of this technique is its applicability not only for missions flying over dedicated sites but also for missions on interleaved or non repetitive orbits. This article presents the altimeter bias estimates obtained with this method at the Corsican calibration site, for the Jason-1 mission on its nominal and interleaved orbits as well as for the Jason-2 and Envisat missions. The various regional bias estimates (8.2 cm and 7.4 cm for Jason-1 respectively on the nominal and interleaved orbits in Senetosa, 16.4 cm for Jason-2 in Senetosa and 47.0 cm for Envisat in Ajaccio, with an accuracy between 2.5 cm and 4 cm depending on the mission) are compared with the results obtained by the other in situ calibration teams. This comparison demonstrates the coherency at the centimetre level, the stability and the generic character of the method, which would also be of benefit to the new and future altimeter missions such as Cryosat-2, SARAL/AltiKa, Sentinel-3, Jason-3, Jason-CS.  相似文献   

3.
4.
Driven by the GMES (Global Monitoring for Environment and Security) and GGOS (Global Geodetic Observing System) initiatives the user community has a strong demand for high-quality altimetry products. In order to derive such high-quality altimetry products, precise orbits for the altimetry satellites are a necessity. With the launch of the TOPEX/Poseidon mission in 1992 a still on-going time series of high-accuracy altimetry measurements of ocean topography started, continued by the altimetry missions Jason-1 in 2001 and Jason-2/OSTM in 2008. This paper contributes to the on-going orbit reprocessing carried out by several groups and presents the efforts of the Navigation Support Office at ESA/ESOC using its NAPEOS software for the generation of precise and homogeneous orbits referring to the same reference frame for the altimetry satellites Jason-1 and Jason-2. Data of all three tracking instruments on-board the satellites (beside the altimeter), i.e. GPS, DORIS, and SLR measurements, were used in a combined data analysis. About 7 years of Jason-1 data and more than 1 year of Jason-2 data were processed. Our processing strategy is close to the GDR-C standards. However, we estimated slightly different scaling factors for the solar radiation pressure model of 0.96 and 0.98 for Jason-1 and Jason-2, respectively. We used 30 s sampled GPS data and introduced 30 s satellite clocks stemming from ESOC’s reprocessing of the combined GPS/GLONASS IGS solution. We present the orbit determination results, focusing on the benefits of adding GPS data to the solution. The fully combined solution was found to give the best orbit results. We reach a post-fit RMS of the GPS phase observation residuals of 6 mm for Jason-1 and 7 mm for Jason-2. The DORIS post-fit residuals clearly benefit from using GPS data in addition, as the DORIS data editing improves. The DORIS observation RMS for the fully combined solution is with 3.5 mm and 3.4 mm, respectively, 0.3 mm better than for the DORIS-SLR solution. Our orbit solution agrees well with external solutions from other analysis centers, as CNES, LCA, and JPL. The orbit differences between our fully combined orbits and the CNES GDR-C orbits are of about 0.8 cm for Jason-1 and at 0.9 cm for Jason-2 in the radial direction. In the cross-track component we observe a clear improvement when adding GPS data to the POD process. The 3D-RMS of the orbit differences reveals a good orbit consistency at 2.7 cm and 2.9 cm for Jason-1 and Jason-2. Our resulting orbit series for both Jason satellites refer to the ITRF2005 reference frame and are provided in sp3 file format on our ftp server.  相似文献   

5.
The Corsica site has been established in 1996 to perform altimeter calibration on TOPEX/Poseidon and then on its successors Jason-1 and Jason-2. The first chosen location was under the #85 ground track that overflight the Senetosa Cape. In 2005, it was decided to develop another location close to Ajaccio, to be able to perform the calibration of Envisat and in a next future of SARAL/AltiKa that will flight over the same ground tracks. Equipped with various instruments (tide gauges, permanent GPS, GPS buoy, weather station…) the Corsica calibration site is able to quantify the altimeter Sea Surface Height bias but also to give an input on the origin of this bias (range, corrections, orbits, …). Due to the size of Corsica (not a tiny island), the altimeter measurement system (range and corrections) can be contaminated by land. The aim of this paper is to evaluate this land contamination by using GPS measurements from a fixed receiver on land and from another receiver onboard a life buoy. Concerning the altimeter land contamination, we have quantify that this effect can reach 8 mm/km and then affects the Sea Surface Height bias values already published in the framework of the Corsica calibration site by 5–8 mm for TOPEX and Jason missions. On the other hand, the radiometer measurements (wet troposphere correction) are also sensitive to land and we have been able to quantify the level of improvement of a dedicated coastal algorithm that reconciles our results with those coming from other calibration sites. Finally, we have also shown that the standard deviation of the GPS buoy sea level measurements is highly correlated (∼87%) with the Significant Wave Height derived from the altimeters and can be used to validate such parameter.  相似文献   

6.
The TOPEX/Poseidon, Jason-1 and Jason-2 set of altimeter data now provide a time series of synoptic observations of the ocean that span nearly 17 years from the launch of TOPEX in 1992. The analysis of the altimeter data including the use of altimetry to monitor the global change in mean sea level requires a stable, accurate, and consistent orbit reference over the entire time span. In this paper, we describe the recomputation of a time series of orbits that rely on a consistent set of reference frames and geophysical models. The recomputed orbits adhere to the IERS 2003 standards for ocean and earth tides, use updates to the ITRF2005 reference frame for both the SLR and DORIS stations, apply GRACE-derived models for modeling of the static and time-variable gravity, implement the University College London (UCL) radiation pressure model for Jason-1, use improved troposphere modeling for the DORIS data, and apply the GOT4.7 ocean tide model for both dynamical ocean tide modeling and for ocean loading. The new TOPEX orbits have a mean SLR fit of 1.79 cm compared to 2.21 cm for the MGDR-B orbits. These new TOPEX orbits agree radially with independent SLR/crossover orbits at 0.70 cm RMS, and the orbit accuracy is estimated at 1.5–2.0 cm RMS over the entire TOPEX time series. The recomputed Jason-1 orbits agree radially with the Jason-1 GDR-C orbits at 1.08 cm RMS. The GSFC SLR/DORIS dynamic and reduced-dynamic orbits for Jason-2 agree radially with independent orbits from the CNES and JPL at 0.70–1.06 cm RMS. Applying these new orbits, and using the latest altimeter corrections for TOPEX, Jason-1, and Jason-2 from September 1992 to May 2009, we find a global rate in mean sea level of 3.0 ± 0.4 mm/yr.  相似文献   

7.
We describe results from two decades of monitoring vertical seafloor motion at the Harvest oil platform, NASA’s prime verification site for the TOPEX/Poseidon and Jason series of reference altimeter missions. Using continuous GPS observations, we refine estimates of the platform subsidence—due most likely to fluid withdrawal linked to oil production—and describe the impact on estimates of stability for the altimeter measurement systems. The cumulative seafloor subsidence over 20 yrs is approximately 10 cm, but the rate does not appear constant. The apparent non-linear nature of the vertical motion, coupled with long-period GPS errors, implies that the quality of the seafloor motion estimates is not uniform over the 20-yr period. For the Jason-1 era (2002–2009), competing estimates for the subsidence show agreement to better than 1 mm yr−1. Longer durations of data are needed before the seafloor motion estimates for the Jason-2 era (2008–present) can approach this level of accuracy.  相似文献   

8.
The aim of this work has been to examine the relationship of steep bathymetry in the coastal areas around the permanent Cal/Val facility of Gavdos, and their influence on the produced calibration values for the Jason-2 satellite altimeter. The paper describes how changes in seafloor topography (from 200 to 3500 m depth over a distance of 10 km) are reflected on the determined altimeter parameters using different reference surfaces for satellite calibration. Finally, it describes the relation between these parameter trends and the region’s local characteristics.  相似文献   

9.
A major interest of radar altimetry over rivers is to monitor water resources and associated risk in basins where there is little or no conventional in situ data. The objective of the present study is to calibrate altimetry data in a place where conventional data are available, and use the results to estimate the potential error committed in the estimation of water levels in an ungauged or poorly gauged basin. The virtual stations extracted with Jason-2 in this study concern a very broad sample of river channel width and complexity. Minimum channel width has been estimated at 400 m. Unlike TOPEX/Poseidon (T/P), Jason-2 seems to have the capability to distinguish the river bed from its floodplain. The quality of the results obtained with Jason-2 is incomparably better than that obtained with T/P. Despite the fact that no absolute calibration has been assessed for river in this study, the bias calculated converge around 0, 35 m, which could be then the error estimated on the water stage derived from Jason-2 ranges, when no other validation is available. ICE3 algorithm seems to be performing as well as ICE1, and further research is needed to design retracking algorithm specifically for continental water.  相似文献   

10.
We compute a series of Jason-2 GPS and SLR/DORIS-based orbits using ITRF2005 and the std0905 standards ( Lemoine et al., 2010). Our GPS and SLR/DORIS orbit data sets span a period of 2 years from cycle 3 (July 2008) to cycle 74 (July 2010). We extract the Jason-2 orbit frame translational parameters per cycle by the means of a Helmert transformation between a set of reference orbits and a set of test orbits. We compare the annual terms of these time-series to the annual terms of two different geocenter motion models where biases and trends have been removed. Subsequently, we include the annual terms of the modeled geocenter motion as a degree-1 loading displacement correction to the GPS and SLR/DORIS tracking network of the POD process. Although the annual geocenter motion correction would reflect a stationary signal in time, under ideal conditions, the whole geocenter motion is a non-stationary process that includes secular trends. Our results suggest that our GSFC Jason-2 GPS-based orbits are closely tied to the center of mass (CM) of the Earth consistent with our current force modeling, whereas GSFC’s SLR/DORIS-based orbits are tied to the origin of ITRF2005, which is the center of figure (CF) for sub-secular scales. We quantify the GPS and SLR/DORIS orbit centering and how this impacts the orbit radial error over the globe, which is assimilated into mean sea level (MSL) error, from the omission of the annual term of the geocenter correction. We find that for the SLR/DORIS std0905 orbits, currently used by the oceanographic community, only the negligence of the annual term of the geocenter motion correction results in a – 4.67 ± 3.40 mm error in the Z-component of the orbit frame which creates 1.06 ± 2.66 mm of systematic error in the MSL estimates, mainly due to the uneven distribution of the oceans between the North and South hemisphere.  相似文献   

11.
The NASA GSFC DORIS analysis center has provided weekly DORIS solutions from November 1992 to January 2009 (839 SINEX files) of station positions and Earth Orientation Parameters for inclusion in the DORIS contribution to ITRF2008. The NASA GSFC GEODYN orbit determination software was used to process the orbits and produce the normal equations. The weekly SINEX gscwd10 submissions included DORIS data from Envisat, TOPEX/Poseidon, SPOT-2, SPOT-3, SPOT-4, SPOT-5. The orbits were mostly seven days in length (except for weeks with data gaps or maneuvers). The processing used the GRACE-derived EIGEN-GL04S1 gravity model, updated modeling for time-variable gravity, the GOT4.7 ocean tide model and tuned satellite-specific macromodels for SPOT-2, SPOT-3, SPOT-4, SPOT-5 and TOPEX/Poseidon. The University College London (UCL) radiation pressure model for Envisat improves nonconservative force modeling for this satellite, reducing the median residual empirical daily along-track accelerations from 3.75 × 10−9 m/s2 with the a priori macromodel to 0.99 × 10−9 m/s2 with the UCL model. For the SPOT and Envisat DORIS satellite orbits from 2003 to 2008, we obtain average RMS overlaps of 0.8–0.9 cm in the radial direction, 2.1–3.4 cm cross-track, and 1.7–2.3 cm along-track. The RMS orbit differences between Envisat DORIS-only and SLR & DORIS orbits are 1.1 cm radially, 6.4 cm along-track and 3.7 cm cross-track and are characterized by systematic along-track mean offsets due to the Envisat DORIS system time bias of ±5–10 μs. We obtain a good agreement between the geometrically-determined geocenter parameters and geocenter parameters determined dynamically from analysis of the degree one terms of the geopotential. The intrinsic RMS weekly position repeatability with respect to the IDS-3 combination ranges from 2.5 to 3.0 cm in 1993–1994 to 1.5 cm in 2007–2008.  相似文献   

12.
The main objective of this paper is to integrate Non-Tidal Sea Level (NSL) from the joint TOPEX, Jason-1 and Jason-2 satellite altimetry with tide gauge data at the west and north coast of the United Kingdom for coastal sea level prediction. The temporal correlation coefficient between altimetric NSLs and tide gauge data reaches a maximum higher than 90% for each gauge. The results show that the multivariate regression approach can efficiently integrate the two types of data in the coastal waters of the area. The Multivariate Regression Model is established by integrating the along-track NSL from the joint TOPEX/Jason-1/Jason-2 altimeters with that from eleven tide gauges. The model results give a maximum hindcast skill of 0.95, which means maximum 95% of NSL variance can be explained by the model. The minimum Root Mean Square Error (RMSe) between altimetric observations and model predictions is 4.99 cm in the area. The validation of the model using Envisat satellite altimetric data gives a maximum temporal correlation coefficient of 0.96 and a minimum RMSe of 4.39 cm between altimetric observations and model predictions, respectively. The model is furthermore used to predict high frequency NSL variation (i.e., every 15 min) during a storm surge event at an independent tide gauge station at the Northeast of the UK (Aberdeen).  相似文献   

13.
Lake water height is a key variable in water cycle and climate change studies, which is achievable using satellite altimetry constellation. A method based on data processing of altimetry from several satellites has been developed to interpolate mean lake surface (MLS) over a set of 22 big lakes distributed on the Earth. It has been applied on nadir radar altimeters in Low Resolution Mode (LRM: Jason-3, Saral/AltiKa, CryoSat-2) in Synthetic Aperture Radar (SAR) mode (Sentinel-3A), and in SAR interferometric (SARin) mode (CryoSat-2), and on laser altimetry (ICESat). Validation of the method has been performed using a set of kinematic GPS height profiles from 18 field campaigns over the lake Issykkul, by comparison of altimetry’s height at crossover points for the other lakes and using the laser altimetry on ICESat-2 mission. The precision reached ranges from 3 to 7 cm RMS (Root Mean Square) depending on the lakes. Currently, lake water level inferred from satellite altimetry is provided with respect to an ellipsoid. Ellipsoidal heights are converted into orthométric heights using geoid models interpolated along the satellite tracks. These global geoid models were inferred from geodetic satellite missions coupled with absolute and regional anomaly gravity data sets spread over the Earth. However, the spatial resolution of the current geoid models does not allow capturing short wavelength undulations that may reach decimeters in mountaineering regions or for rift lakes (Baikal, Issykkul, Malawi, Tanganika). We interpolate in this work the geoid height anomalies with three recent geoid models, the EGM2008, XGM2016 and EIGEN-6C4d, and compare them with the Mean Surface of 22 lakes calculated using satellite altimetry. Assuming that MLS mimics the local undulations of the geoid, our study shows that over a large set of lakes (in East Africa, Andean mountain and Central Asia), short wavelength undulations of the geoid in poorly sampled areas can be derived using satellite altimetry. The models used in this study present very similar geographical patterns when compared to MLS. The precision of the models largely depends on the location of the lakes and is about 18 cm, in average over the Earth. MLS can serve as a validation dataset for any future geoid model. It will also be useful for validation of the future mission SWOT (Surface Water and Ocean Topography) which will measure and map water heights over the lakes with a high horizontal resolution of 250 by 250 m.  相似文献   

14.
The use of geoid heights has been one of the available methodologies utilized for the independent calibration/validation of altimeters on-board satellites. This methodology has been employed for long in the Gavdos dedicated cal/val facility (Crete, Greece), where calibration results for the Jason satellites have been estimated, both for ascending and descending passes. The present work gives a detailed overview of the methodology followed in order to estimate a high-resolution and accuracy gravimetric geoid model for the wider Gavdos area, in support of the on-going calibration work. To estimate the geoid model, the well-known remove-compute-restore method is used while residual geoid heights are estimated through least-squares collocation so that associated errors are determined as well. It is found that the estimated formal geoid errors from LSC along passes 018 and 109 of Jason satellites, used for the bias estimation, range between ±0.8–1.6 cm. The so-derived geoid heights are employed in the determination of the Jason-2 altimeter bias for all available cycles (cycles 1-114, spanning the period from July 2008 to August 2011) together with the RioMed DOT model. From the results acquired the Jason-2 bias has been estimated to be +196.1 ± 3.2 mm for pass 109 and +161.9 ± 5.1 mm for pass 018. Within the same frame, the GOCE/GRACE-based geopotential model GOCO02s has been used to estimate the mean dynamic ocean topography and the steady-state circulation in the area around Gavdos. The so-derived DOT model was used to estimate the Jason-2 bias in an effort to evaluate the performance of satellite-only geoid models and investigate whether their spatial resolution and accuracy provides some improvement w.r.t. traditional local gravimetric geoids. From the results acquired with geoid heights from GOCO02s, the estimated Jason-2 bias deviates significantly from that of the local gravimetric model, which can be attributed to a possible mean offset and the low resolution of GOCE-based GGMs. On the other hand, when the newly estimated GOCE-based DOT was employed with geoid heights from the local gravimetric geoid model, the Jason-2 bias has been estimated to be +185.1 ± 3.2 mm for pass 109 and +130.2 ± 5.1 mm for pass 018.  相似文献   

15.
Although the history of spaceborne altimeters goes back to the early seventies, the absolute calibration of the backscattering coefficient has never been deeply investigated. This information has been primarily used to infer the wind speed via an empirical model, and the intercalibration among different satellite altimeters has revealed to be suitable for this purpose, being the wind retrieval based on an empirical relationship. As far as Ku band system is concerned, the sigma naught absolute calibration of the Envisat altimeter (RA-2) has been performed using an active reference target provided by a transponder. This has been exploited during the 6-month Commissioning phase to generate early calibration results. In order to monitor the RA-2 backscatter calibration during the Envisat lifetime, a continuous calibration effort has been carried out by operating the transponder as much as possible. This paper aims to review the entire effort for calibrating the RA-2 sigma naught measurements, which lasted for almost seven years. It presents in detail the adopted methodology and the final outcome of the activity, providing the users with the correction (bias) to get the calibrated sigma naught and analyzing its stability during almost the entire Envisat lifetime. Specifically, it is concluded that the RA-2 backscatter measurements were quite stable, even if a bias of about 1 dB should be considered with respect to the actually released product. Some small changes in the bias as function of time can be identified during most of the Envisat lifetime, consisting in a slight increase in the first two years, followed by a more stable period and a final drop observed at the end of 2009, until the conclusion of the calibration activity (corresponding to the change in Envisat orbit).  相似文献   

16.
An attitude determination and control system (ADCS) is critical to satellite attitude maneuvers and to the coordinate transformation from the inertial frame to the spacecraft frame. This paper shows specific sensors in the ADCS of the satellite mission FORMOSAT-3/COSMIC (F3/C) and the impact of the ADCS quality on orbit accuracy. The selection of main POD antenna depends on the beta angles of the different F3/C satellites (for FM2 and FM4) during the inflight phase. In particular, under the eclipse, alternative attitude sensors are activated to replace the Sun sensors, and such a sensor change leads to anomalous GPS phase residuals and a degraded orbit accuracy. Since the nominal attitude serves as a reference for ADCS, the 3-dimensional attitude-induced errors in reduced dynamic orbits over selected days in 2010 show 9.35, 10.78, 4.97, 5.48, 7.18, and 6.89 cm for FM1–FM6. Besides, the 3-dimensional velocity errors induced by the attitude effect are 0.10, 0.10, 0.07, 0.08, 0.09, and 0.10 for FM1–FM6. We analyze the quality of the observed attitude transformation matrix of F3/C and its impact on kinematic orbit determination. With 249 days of GPS in 2008, the analysis leads to the following averaged 3-dimensional attitude-induced orbit errors: 2.72, 2.62, 2.37, 1.90, 1.70, and 1.99 cm for satellites FM1–FM6. Critical suggestions of geodetic payloads for the follow-on mission of F3/C are presented based on the current result.  相似文献   

17.
GPS data dedicated to sea surface observation are usually processed using differential techniques. Unfortunately, the precision of resulting kinematic positions is baseline-length dependent. So, high precision sea surface observations using differential GPS techniques are limited to coasts, lakes, and rivers. Recent improvements in GPS satellite products (orbits, clocks, and phase biases) make phase ambiguity fixing at the zero difference level achievable and opens up the observation of the sea surface without geographical constraints. This paper recalls the concept of the Integer Precise Point Positioning technique and discusses the precision of GPS buoy positioning. A sequential version of the GINS software has been implemented to achieve single epoch GPS positioning. We used 1 Hz data from a two week GPS campaign conducted in the Kerguelen Islands. A GPS buoy has been moored close to a radar gauge and 90 m away from a permanent GPS station. This infrastructure offers the opportunity to compare both kinematic Integer Precise Point Positioning and classical differential GPS positioning techniques to in situ radar gauge data. We found that Precise Point Positioning results are not significantly biased with respect to radar gauge data and that horizontal time series are consistent with differential processing at the sub-centimetre precision level. Nevertheless, standard deviations of height time series with respect to radar gauge data are typically [4–5] cm. The dominant driver for noise at this level is attributed to errors in tropospheric estimates which propagate into position solutions.  相似文献   

18.
Measuring ground deformation underwater is essential for understanding Earth processes at many scales. One important example is subduction zones, which can generate devastating earthquakes and tsunamis, and where the most important deformation signal related to plate locking is usually offshore. We present an improved method for making offshore vertical deformation measurements, that involve combining tide gauge and altimetry data. We present data from two offshore sites located on either side of the plate interface at the New Hebrides subduction zone, where the Australian plate subducts beneath the North Fiji basin. These two sites have been equipped with pressure gauges since 1999, to extend an on-land GPS network across the plate interface. The pressure series measured at both sites show that Wusi Bank, located on the over-riding plate, subsides by 11 ± 4 mm/yr with respect to Sabine Bank, which is located on the down-going plate. By combining water depths derived from the on-bottom pressure data with sea surface heights derived from altimetry data, we determine variations of seafloor heights in a global reference frame. Using altimetry data from TOPEX/Poseidon, Jason-1, Jason-2 and Envisat missions, we find that the vertical motion at Sabine Bank is close to zero and that Wusi Bank subsides by at least 3 mm/yr and probably at most 11 mm/yr.  相似文献   

19.
Ionosphere response to severe geomagnetic storms that occurred in 2001–2003 was analyzed using data of global ionosphere maps (GIM), altimeter data from the Jason-1 and TOPEX satellites, and data of GPS receivers on-board CHAMP and SAC-C satellites. This allowed us to study in detail ionosphere redistribution due to geomagnetic storms, dayside ionospheric uplift and overall dayside TEC increase. It is shown that after the interplanetary magnetic field turns southward and intensifies, the crests of the equatorial ionization anomaly (EIA) travel poleward and the TEC value within the EIA area increases significantly (up to ∼50%). GPS data from the SAC-C satellite show that during the main phase of geomagnetic storms TEC values above the altitude of 715 km are 2–3 times higher than during undisturbed conditions. These effects of dayside ionospheric uplift occur owing to the “super-fountain effect” and last few hours while the enhanced interplanetary electric field impinged on the magnetopause.  相似文献   

20.
Tropospheric correction is one of the most important corrections in satellite altimetry measurements. Tropospheric wet and dry path delays have strong dependence on temperature, pressure and humidity. Tropospheric layer has particularly high variability over coastal regions due to humidity, wind and temperature gradients. Depending on the extent of water body and wind conditions over an inland water, Wet Tropospheric Correction (WTC) is within the ranges from a few centimeters to tens of centimeters. Therefore, an extra care is needed to estimate tropospheric corrections on the altimetric measurements over inland waters. This study assesses the role of tropospheric correction on the altimetric measurements over the Urmia Lake in Iran. For this purpose, four types of tropospheric corrections have been used: (i) microwave radiometer (MWR) observations, (ii) tropospheric corrections computed from meteorological models, (iii) GPS observations and (iv) synoptic station data. They have been applied to Jason-2 track no. 133 and SARAL/AltiKa track no. 741 and 356 corresponding to 117–153 and the 23–34 cycles, respectively. In addition, the corresponding measurements of PISTACH and PEACHI, include new retracking method and an innovative wet tropospheric correction, have also been used. Our results show that GPS observation leads to the most accurate tropospheric correction. The results obtained from the PISTACH and PEACHI projects confirm those obtained with the standard SGDR, i.e., the role of GPS in improving the tropospheric corrections. It is inferred that the MWR data from Jason-2 mission is appropriate for the tropospheric corrections, however the SARAL/AltiKa one is not proper because Jason-2 possesses an enhanced WTC near the coast. Furthermore, virtual stations are defined for assessment of the results in terms of time series of Water Level Height (WLH). The results show that GPS tropospheric corrections lead to the most accurate WLH estimation for the selected virtual stations, which improves the accuracy of the obtained WLH time series by about 5%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号