首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Particle impacts on spacecraft can cause considerable damage, even leading to complete failure. A theory for the resulting vehicle potential changes and the electromagnetic radiation from impact-induced plasma has been published by Close et al. (2010). Here we compare this theory to impacts registered by the Radio and Plasma Wave Science instrumentation on the Cassini spacecraft. We study both low-velocity (16 km/s) large particles (2.6 μm radius) detected in Saturn’s rings and high-velocity (450 km/s) small particles (1 nm radius) in the solar wind. The agreement with the theory is quite good. We also apply these results to earth orbit and conclude that both Electrostatic Discharge and Electromagnetic Pulse radiation are likely and could lead to spacecraft failure.  相似文献   

2.
The concept of a pole-sitter has been under investigation for many years, showing the capability of a low-thrust propulsion system to maintain a spacecraft at a static position along a planet’s polar axis. From such a position, the spacecraft has a view of the planet’s polar regions equivalent to that of the low- and mid-latitudes from geostationary orbit. Previous work has hinted at the existence of pole-sitters that would only require a solar sail to provide the necessary propulsive thrust if a slight deviation from a position exactly along the polar axis is allowed, without compromising on the continuous view of the planet’s polar region (a so-called quasi-pole-sitter). This paper conducts a further in-depth analysis of these high-potential solar-sail-only quasi-pole-sitters and presents a full end-to-end trajectory design: from launch and transfer to orbit design and orbit control. The results are the next steppingstone towards strengthening the feasibility and utility of these orbits for continuous planetary polar observation.  相似文献   

3.
以三颗非共轨的Walker星座卫星为研究对象, 对航天器无需变轨与其接近的可能性进行研究. 将Lambert方法得到的航天器轨道作为初始轨道, 利用遗传算法对初始轨道进行优化. 对初始轨道在参考时刻位置和速度的改变量进行编码,形成对应的种群. 以航天器与星座卫星之间的最近距离为适应度函数, 通过种群的繁殖得到优化结果. 结合仿真算例, 分析了最小二乘算法和遗传算法在轨道优化中的优劣以及接近过程中轨道摄动的影响. 结果表明, 遗传算法适用于所提出的轨道改进问题. 研究结果可为单航天器无需变轨对星座多星接近问题提供理论依据.   相似文献   

4.
以太阳风粒子、深空尘埃等为目标的采样返回探测任务是空间科学与深空探测研究的热点方向之一。对“星尘号”“起源号”两个典型采样返回探测器的构型进行了分析,并梳理了其主要构型特点。结合我国月地高速再入返回飞行器的构型特点,提出了一种深空粒子采样返回探测器构型的设想:总体构型由长方形主体和流线型返回器组成,主体构型适应于承载返回器和其他装器设备,返回器构型适应于样品收集和再入返回气动外形。设计方案采用了充气式采样器进行粒子收集,具有体积小、重量轻、折叠效率高、展开可靠、工程实施简单等特点,并采用了可重复收拢展开的太阳翼,能够适应收集不同类型深空粒子的需求。  相似文献   

5.
In this study the gravitational perturbations of the Sun and other planets are modeled on the dynamics near the Earth–Moon Lagrange points and optimal continuous and discrete station-keeping maneuvers are found to maintain spacecraft about these points. The most critical perturbation effect near the L1 and L2 Lagrange points of the Earth–Moon is the ellipticity of the Moon’s orbit and the Sun’s gravity, respectively. These perturbations deviate the spacecraft from its nominal orbit and have been modeled through a restricted five-body problem (R5BP) formulation compatible with circular restricted three-body problem (CR3BP). The continuous control or impulsive maneuvers can compensate the deviation and keep the spacecraft on the closed orbit about the Lagrange point. The continuous control has been computed using linear quadratic regulator (LQR) and is compared with nonlinear programming (NP). The multiple shooting (MS) has been used for the computation of impulsive maneuvers to keep the trajectory closed and subsequently an optimized MS (OMS) method and multiple impulses optimization (MIO) method have been introduced, which minimize the summation of multiple impulses. In these two methods the spacecraft is allowed to deviate from the nominal orbit; however, the spacecraft trajectory should close itself. In this manner, some closed or nearly closed trajectories around the Earth–Moon Lagrange points are found that need almost zero station-keeping maneuver.  相似文献   

6.
A crucial part of a space mission for very-long baseline interferometery (VLBI), which is the technique capable of providing the highest resolution images in astronomy, is orbit determination of the mission’s space radio telescope(s). In order to successfully detect interference fringes that result from correlation of the signals recorded by a ground-based and a space-borne radio telescope, the propagation delays experienced in the near-Earth space by radio waves emitted by the source and the relativity effects on each telescope’s clock need to be evaluated, which requires accurate knowledge of position and velocity of the space radio telescope. In this paper we describe our approach to orbit determination (OD) of the RadioAstron spacecraft of the RadioAstron space-VLBI mission. Determining RadioAstron’s orbit is complicated due to several factors: strong solar radiation pressure, a highly eccentric orbit, and frequent orbit perturbations caused by the attitude control system. We show that in order to maintain the OD accuracy required for processing space-VLBI observations at cm-wavelengths it is required to take into account the additional data on thruster firings, reaction wheel rotation rates, and attitude of the spacecraft. We also investigate into using the unique orbit data available only for a space-VLBI spacecraft, i.e. the residual delays and delay rates that result from VLBI data processing, as a means to evaluate the achieved OD accuracy. We present the results of the first experience of OD accuracy evaluation of this kind, using more than 5000 residual values obtained as a result of space-VLBI observations performed over 7 years of the RadioAstron mission operations.  相似文献   

7.
When the impact risk from meteoroids and orbital debris is assessed the main concern is usually structural damage. With their high impact velocities of typically 10–20 km/s millimeter or centimeter sized objects can puncture pressure vessels and other walls or lead to destruction of complete subsystems or even whole spacecraft. Fortunately chances of collisions with such larger objects are small (at least at present). However, particles in the size range 1–100 μm are far more abundant than larger objects and every orbiting spacecraft will encounter them with certainty. Every solar cell (8 cm2 area) of the Hubble Space Telescope encountered on average 12 impacts during its 8.25 years of space exposure. Most were from micron sized particles.  相似文献   

8.
The Russian solar observatory CORONAS-F was launched into a circular orbit on July 31, 2001 and operated until December 12, 2005. Two main aims of this experiment were: (1) simultaneous study of solar hard X-ray and γ-ray emission and charged solar energetic particles, (2) detailed investigation of how solar energetic particles influence the near-Earth space environment. The CORONAS-F satellite orbit allows one to measure both solar energetic particle dynamics and variations of the solar particle boundary penetration as well as relativistic electrons of the Earth’s outer radiation belt during and after magnetic storms. We have found that significant enhancements of relativistic electron flux in the outer radiation belt were observed not only during strong magnetic storms near solar maximum but also after weak storms caused by high speed solar wind streams. Relativistic electrons of the Earth’s outer radiation belt cause volumetric ionization in the microcircuits of spacecraft causing them to malfunction, and solar energetic particles form an important source of radiation damage in near-Earth space. Therefore, the present results and future research in relativistic electron flux dynamics are very important.  相似文献   

9.
面向空间应用,依据某航天器任务期间的功耗需求,采用燃料电池和蓄电池的架构,对1kW燃料电池电源系统的设计与实现进行研究。构建了1kW燃料电池电源系统仿真模型,对系统设计原理进行了仿真验证,并研制了1kW燃料电池电源系统样机,对系统典型的负载阶跃工况进行了试验测试。试验测试结果表明,1kW燃料电池电源系统在半载阶跃变化时,母线电压波动小于5V,调节时间小于25μs;整个运行过程系统工作正常稳定,能够满足航天器空间应用需求。  相似文献   

10.
Orbital debris is known to pose a substantial threat to Earth-orbiting spacecraft at certain altitudes. For instance, the orbital debris flux near Sun-synchronous altitudes of 600–800 km is particularly high due in part to the 2007 Fengyun-1C anti-satellite test and the 2009 Iridium-Kosmos collision. At other altitudes, however, the orbital debris population is minimal and the primary impactor population is not man-made debris particles but naturally occurring meteoroids. While the spacecraft community has some awareness of the risk posed by debris, there is a common misconception that orbital debris impacts dominate the risk at all locations. In this paper, we present a damage-limited comparison between meteoroids and orbital debris near the Earth for a range of orbital altitude and inclination, using NASA’s latest models for each environment. Overall, orbital debris dominates the impact risk between altitudes of 600 and 1300 km, while meteoroids dominate below 270 km and above 4800 km.  相似文献   

11.
In this work, equilibrium attitude configurations, attitude stability and periodic attitude families are investigated for rigid spacecrafts moving on stationary orbits around asteroid 216 Kleopatra. The polyhedral approach is adopted to formulate the equations of rotational motion. In this dynamical model, six equilibrium attitude configurations with non-zero Euler angles are identified for a spacecraft moving on each stationary orbit. Then the linearized equations of attitude motion at equilibrium attitudes are derived. Based on the linear system, the necessary conditions of stability of equilibrium attitudes are provided, and stability domains on the spacecraft’s characteristic plane are obtained. It is found that the stability domains are distributed in the first and third quadrants of the characteristic plane and the stability domain in the third quadrant is separated into two regions by an unstable belt. Subsequently, we present the linear solution around a stable equilibrium attitude point, indicating that there are three types of elemental periodic attitudes. By means of numerical approaches, three fundamental families of periodic solutions are determined in the full attitude model.  相似文献   

12.
Micro-meteoroid and space debris impact risk assessments are performed to investigate the risk from hypervelocity impacts to sensitive spacecraft sub-systems. For these analyses, ESA’s impact risk assessment tool ESABASE2/Debris is used. This software tool combines micro-particle environment models, damage equations for different shielding designs and satellite geometry models to perform a detailed 3D micro-particle impact risk assessment. This paper concentrates on the impact risk for exposed pressurized tanks. Pressure vessels are especially susceptible to hypervelocity impacts when no protection is available from the satellite itself. Even small particles in the mm size range can lead to a fatal burst or rupture of a tank when impacting with a typical collision velocity of 10–20 km/s. For any space mission it has to be assured that the impact risk is properly considered and kept within acceptable limits. The ConeXpress satellite mission is analysed as example. ConeXpress is a planned service spacecraft, intended to extend the lifetime of telecommunication spacecraft in the geostationary orbit. The unprotected tanks of ConeXpress are identified as having a high failure risk from hypervelocity impacts, mainly caused by micro-meteoroids. Options are studied to enhance the impact protection. It is demonstrated that even a thin additional protective layer spaced several cm from the tank would act as part of a double wall (Whipple) shield and greatly reduce the impact risk. In case of ConeXpress with 12 years mission duration the risk of impact related failure of a tank can be reduced from almost 39% for an unprotected tank facing in flight direction to below 0.1% for a tank protected by a properly designed Whipple shield.  相似文献   

13.
Knowledge about the rotation properties of space debris objects is essential for the active debris removal missions, accurate re-entry predictions and to investigate the long-term effects of the space environment on the attitude motion change. Different orbital regions and object’s physical properties lead to different attitude states and their change over time.Since 2007 the Astronomical Institute of the University of Bern (AIUB) performs photometric measurements of space debris objects. To June 2016 almost 2000 light curves of more than 400 individual objects have been acquired and processed. These objects are situated in all orbital regions, from low Earth orbit (LEO), via global navigation systems orbits and high eccentricity orbit (HEO), to geosynchronous Earth orbit (GEO). All types of objects were observed including the non-functional spacecraft, rocket bodies, fragmentation debris and uncorrelated objects discovered during dedicated surveys. For data acquisition, we used the 1-meter Zimmerwald Laser and Astrometry Telescope (ZIMLAT) at the Swiss Optical Ground Station and Geodynamics Observatory Zimmerwald, Switzerland. We applied our own method of phase-diagram reconstruction to extract the apparent rotation period from the light curve. Presented is the AIUB’s light curve database and the obtained rotation properties of space debris as a function of object type and orbit.  相似文献   

14.
研究讨论了一种利用孤立导体在空间等离子体环境中建立探测器参考电位的技术.将一个金属导体与航天器进行电隔离,利用电路将孤立导体电位引入探测器电源模块,为探测器建立参考电位.该技术可安全方便地应用于卫星等航天器,使探测器的地电位与空间等离子体电位基本一致,避免航天器本体电位对探测器的影响.该技术将应用于中国空间站等离子体原位探测器,通过测试验证了该技术方法可以建立-210~+210V的参考电位,满足空间站等离子体原位探测器-200~+200V的参考电位技术需求.   相似文献   

15.
近地轨道集群航天器电磁编队飞行非线性反馈控制方法   总被引:1,自引:0,他引:1  
针对近地轨道集群航天器电磁编队飞行的动力学和控制问题, 提出了一种非线性反馈控制方法. 基于电磁力模型和地磁场模型, 分析了地磁场对近地轨道电磁编队的影响; 建立了集群航天器电磁编队高精度相对轨道动力学模型; 基于Lyapunov稳定性理论设计了一种非线性反馈控制律, 利用该方法对两星电磁编队维持控制进行了仿真验证. 仿真结果表明, 地磁场引起的电磁干扰力可以忽略, 但是电磁干扰力矩的影响必须考虑; 近地轨道集群航天器电磁编队是可控的, 所设计的控制方法是可行的.   相似文献   

16.
The shape of flux profiles of gradual solar energetic particle (SEP) events depends on several not well-understood factors, such as the strength of the associated shock, the relative position of the observer in space with respect to the traveling shock, the existence of a background seed particle population, the interplanetary conditions for particle transport, as well as the particle energy. Here, we focus on two of these factors: the influence of the shock strength and the relative position of the observer. We performed a 3D simulation of the propagation of a coronal/interplanetary CME-driven shock in the framework of ideal MHD modeling. We analyze the passage of this shock by nine spacecraft located at ∼0.4 AU (Mercury’s orbit) and at different longitudes and latitudes. We study the evolution of the plasma conditions in the shock front region magnetically connected to each spacecraft, that is the region of the shock front scanned by the “cobpoint” (Heras et al., 1995), as the shock propagates away from the Sun. Particularly, we discuss the influence of the latitude of the observer on the injection rate of shock-accelerated particles and, hence, on the resulting proton flux profiles to be detected by each spacecraft.  相似文献   

17.
航天器进入空间环境以后,空间环境分子污染和颗粒污染形成了航天器表面污染层,从而对航天器的各技术分系统产生不同的负面影响.介绍了中外中轨道航天器表面污染物质沉积变化在轨探测结果,并对污染物质沉积量变化和控制因子做初步评估.结果表明,污染物质沉积量在航天器入轨初期的1~2年内受航天器自身出气物质量、放气速率、表面温度及所处的气流方向等因子所控制.初期沉积量大,正是受到航天器入轨后自身出气量大、放气速率较高的控制,同时迎风面比背风面沉积量大.入轨后期表面沉积量长期变化呈现出明显的降变或缓慢涨落,而且具有全向性特征,因此探讨了具有全向性影响能力的控制因子相关特性,其中高能粒子通量和太阳紫外辐射通量变化可能是主要控制因子.   相似文献   

18.
The Mayer’s variational problem of determining spacecraft optimal trajectories in the context of a classical restricted three-body problem is considered. Integrability of differential equations of a controllable motion in the non-central gravitational field represents well known and challenging task. It is shown that in the absence of sufficient number of first integrals, an explicit dependability of unknown integrals on certain variables can be used to explore the existence of previously unknown particular integrals and solutions of these equations utilizing Dokshevich’s method of analytical dynamics. A new class of extremal analytical solutions of the problem for intermediate thrust arcs is presented. An illustrative example of utilizing these solutions in minimizing the spacecraft characteristic velocity of a transfer from a specified initial position to some final position in the Earth-Moon system is discussed.  相似文献   

19.
集群航天器由于其独特的优势,在未来航天任务中将举足轻重,其边界控制也随即成为研究热点.针对近距离伴飞的圆轨道集群航天器,以集群航天器蜂拥控制模型为基础,通过集群航天器球形边界的定义,运用粒子群优化算法,实现了稳定状态下集群航天器的边界参数寻优.采用球形空腔势函数的控制方法,结合集群航天器边界参数反馈信息,实现了对集群航天器球形边界控制,并仿真验证了算法的可行性.  相似文献   

20.
This paper investigates a boundary control scheme of a spacecraft with double flexible appendages under prescribed performance. The flexible spacecraft system comprises a rigid central hub and two flexible appendages regarded as continuum models, so that the motion of the system can be portrayed by using partial differential equations (PDEs). In this paper, only one control torque and two control forces are applied to guarantee the desired attitude angle of the spacecraft and simultaneously suppress the vibration of the two flexible appendages. Moreover, the angle tracking error of the spacecraft can be restricted in a small residual set under a minimum convergence rate by adopting the prescribed performance technique (PPT). The stability of the boundary control is analyzed by employing LaSalle’s invariance principle. Finally, the feasibility of the proposed controller is verified through numerical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号