首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
From the discrete spectra of the emissions from the comet in the frequency range from 30 to 195 kHz named CKR (Cometary Kilometric Radiation), movements of the bow shock at comet Halley are concluded, i.e., the observed CKR emissions can be interpreted as being generated and propagating from the moving shock. The motion of the shocks are possibly associated with time variation of the solar wind and of the cometary outgassings. By in-situ plasma waves observations using PWP (Plasma Wave Probe) onboard the Sakigake spacecraft, the characteristic spectra of the electrostatic electron plasma waves, the electron cyclotron harmonic waves, and the ion sound waves have been detected during the interval of the Halley's comet fly-by. Compared with the results of a Faraday cup observation and a magnetometer, it is concluded that these plasma wave phenomena are the manifestation of the ion pick-up processes. The ion pick-up processes are taking place even in the remote region within a distance range from 7×106 to 107 km from the cometary nucleus.  相似文献   

2.
Based on the dispersion relation of electron plasma, one can expect, that the waves excited in the frequency band (fp, fu=sqrt(fp*fp+fc*fc)) should persist in experimental spectra. For wave data from a spacecraft immersed in a cold plasma such an assumption may be misleading. In measurements performed on board the INTERCOSMOS-19, ACTIVE, APEX satellites and VC36.064CE rocket the most prominent spectral structure is centered around frequency fr fulfilling the relation fcrp and corresponds to resonant detection of Bernstein waves excited in the surrounding plasma by spacecraft systems. Input network mismatch at frequencies around fu significantly depresses natural plasma noise as well as that excited by the spacecraft. Plasma emissions in the band (fp, fu) are prominent if the electromagnetic excitation is preferential (topside sounders) or if the excitation introduces nonequilibrium components into the plasma e.g. particle beams or clouds. Experimental examples are presented and parameters of cold plasma spectra useful for electron density estimation are discussed. The application to other spacecraft-cold plasma configurations is suggested.  相似文献   

3.
Beam-plasma interaction effects are studied during the active space experiment with electron and Xe-ion beam injections in an ionospheric plasma. Permanent 40-kHz-modulated electron beam injection occurs simultaneously with a xenon-ion beam injected by the Hall-type plasma thruster operating in a square-pulse mode (100/50 s for a job/pause duration). The unusual behavior of the background charged particle fluxes and wave activity stimulated during the beam-plasma interaction have been registered by the scientific instruments onboard Intercosmos-25 station (IK-25) and Magion-3 subsatellite. The longitudinal and electromagnetic wave instabilities and their mutual relationship are considered in order to explain the observed effects. The excitation of electrostatic waves by the electron injection has been considered for different resonance conditions near the linear stability boundary. Beam-driven electromagnetic instability is responsible for the backward-propagating whistler waves excited via cyclotron resonance. Competition of these two beam instabilities is one of the subjects of the present study.  相似文献   

4.
在主动束-等离子体试验中,调制电子束从空间飞行器入射进电离层等离子体将会产生电磁波辐射,在不同试验条件下电磁波辐射机理也不一样,由电子束纵向约束性产生电磁波辐射是其中之一.对半无界稀薄调制电子束从空间飞行器入射进电离层等离子体时所产生的波现象进行了理论分析和数值计算.结果表明,当调制电子束沿磁力线入射时,会在电离层等离子体中产生高频电磁波辐射,该辐射主要集中在垂直于入射电子束运动方向的平面内.   相似文献   

5.
Observations of ionospheric plasma density and frequency-dependent broadband plasma turbulence made during the heritage flight of the Plasma Local Anomalous Noise Experiment (PLANE) are presented. Rather than record high frequency time series data, the experiment was designed to record Power Spectral Distributions (PSDs) in five decadal frequency bins with upper limits ranging from 1.0 Hz to 10 kHz. Additionally, PLANE was designed distinguish turbulence in the ambient plasma from that local to the spacecraft. The instrument consists of two retarding potential analyzers (RPAs) connected together via a feedback loop to force one analyzer into the IV trace retardation region at all times. Fluctuations in this measurement are believed to be ambient only as the RPA’s voltage would be too high for locally turbulent plasma to surmount the potential barrier, which is nominally at ram energy. The instrument requires pointing along the spacecraft’s ram velocity vector to make this measurement, thus requiring stabilization in pitch and yaw. During PLANE’s heritage flight, though the satellite’s attitude control system failed early in the mission, plasma data were collected during opportune times in which the instrument rotated into and out of the ram. Observations of plasma density and PSDs of high frequency plasma turbulence were recorded on several occasions. Additionally, a plasma source onboard the satellite was used to generate artificial plasma turbulence, and the PLANE data observed periodic structure presumably associated with the rotation of the spacecraft during these source firings. A brief comparison with other high frequency in situ plasma instruments is presented.  相似文献   

6.
7.
One of the prominent features of the cusp Turbulent Boundary Layer (TBL) is a persistent low frequency electromagnetic turbulence that extends from <1Hz up to the electron cyclotron frequency, accompanied by what appears to be purely electrostatic noise above this frequency range. The Plasma Wave Instrument onboard Polar obtained plasma wave measurements in the cusp TBL in the form of waveform captures simultaneously from 6 different sensors (3 each orthogonal electric and magnetic) in the frequency range 1 Hz up to 25 kHz. This allowed us to directly calculate the phase velocity from the measured ratio of |dE| to |dB| and compare it to theoretical values for various modes. Using this technique, we have gained some insight into the mode of the electromagnetic turbulence that extends in frequency from 1 Hz up to the electron cyclotron frequency (several hundred Hz to a few kHz) in the TBL. The whistler and kinetic Alfvén wave modes are discussed as the possible modes of this turbulence. By analyzing the high time resolution waveforms, we isolate and identify some of these modes. The electrostatic turbulence above the electron cyclotron frequency is associated with pulses and quasi-sinusoidal waveforms observed in the measured time series. These do not fit any known mode, although work is continuing in this area to show that some of them may be associated with electron holes or with downshifted Langmuir waves produced through a two-stream instability.  相似文献   

8.
At Uranus, the Voyager 2 plasma wave investigation observed very significant phenomena related to radio emissions, dust impacts and magnetospheric wave-particle interactions. On January 19, 1986 (R= 270RU) the plasma wave investigation detected an intense radio burst at 31 and 56 kHz, and this provided the first indication that Uranus had a magnetosphere. During the encounter we observed more of these sporadic bursts, along with relatively continuous radio emissions extending down to 10 kHz, and a sporadic narrowband radio signal with f near 5 kHz. As Voyager passed through the ring plane, the plasma wave investigation recorded a large number of dust impacts. The dust ring was relatively diffuse (thickness of several thousand kilometers) and the peak impact rate was near 50 hits/second. The Voyager 2 plasma wave instrument also detected many strong electromagnetic and electrostatic plasma waves, with intensity peaks in the region within 12 Uranus adii. These waves have characteristics that can interact strongly with the local plasma and with the trapped energetic particles, leading to precipitation into the atmosphere, charged particle acceleration, and charged particle diffusion. In addition we detected strong wave activity in the region of the bow shock and moderate levels in the magnetic tail.  相似文献   

9.
The Porcupine sounding rocket consisted of a central instrumented payload with 4 smaller payloads ejected in the radial direction. One of the smaller payloads contained a xenon ion gun which directed a 200eV Xe+ ion beam roughly perpendicular to the magnetic field. During the ion gun exercises a variety of plasma waves were observed by the δn/n experiment on the central spacecraft. For small separations betwen the ion gun and the plasma wave receivers, intense and very narrow band emissions were observed just above harmonics of the hydrogen gyrofrequency extending from n=1 to at least n=11 and perhaps to much higher harmonics. Additional structure at the helium gyrofrequency was also observed and the width of each spectral line was the order of the oxygen gyrofrequency. The fastest growing modes were at n=5 or 6. For larger separations between the ion gun and plasma wave receiver, band limited emissions were observed between the NO+ and O+ lower hybrid frequencies. The intense ion cyclotron harmonic waves observed for short separations are very similar to plasma waves observed at high altitudes in ion conics by the S3-3 satellite. In those examples, natural ion beams, which were nearly perpendicular to the magnetic field, produced plasma waves between harmonics of the hydrogen gyrofrequency and the most intense waves occurred between n=3 and n=7. Hence the ion beam experiment is directly applicable to understanding ion beams within the magnetosphere.  相似文献   

10.
在空间环境探测中,卫星与等离子体的相互作用会改变背景环境的粒子和电位的分布,从而影响探测器对空间电场的测量.为了给磁层卫星电场探测仪器的研制和设计提供参考,本文以中国未来的磁层电离层探测为背景,针对不同轨道高度的等离子体环境,利用SPIS(Spacecraft Plasma Interaction Software)模拟了卫星平台和探针与等离子体的相互作用,从而得到了不同环境下卫星周围等离子体鞘层的厚度,以及探针电位与电流的对应关系.模拟结果表明:由于光电子和二次电子的影响,卫星鞘层的厚度小于等离子体的德拜半径,且温度越高其偏差越大;模拟得到的探针表面电流与电位的关系表明,施加偏置电流的探针可明显提高对电流扰动的抗干扰能力.此外,估计了不同轨道高度上探针处于最佳工作点时应施加偏置电流的大小.   相似文献   

11.
The Aditya-L1 is first Indian solar mission scheduled to be placed in a halo orbit around the first Lagrangian point (L1) of Sun-Earth system in the year 2018–19. The approved scientific payloads onboard Aditya-L1 spacecraft includes a Fluxgate Digital Magnetometer (FGM) to measure the local magnetic field which is necessary to supplement the outcome of other scientific experiments onboard. The in-situ vector magnetic field data at L1 is essential for better understanding of the data provided by the particle and plasma analysis experiments, onboard Aditya-L1 mission. Also, the dynamics of Coronal Mass Ejections (CMEs) can be better understood with the help of in-situ magnetic field data at the L1 point region. This data will also serve as crucial input for the short lead-time space weather forecasting models.The proposed FGM is a dual range magnetic sensor on a 6?m long boom mounted on the Sun viewing panel deck and configured to deploy along the negative roll direction of the spacecraft. Two sets of sensors (tri-axial each) are proposed to be mounted, one at the tip of boom (6?m from the spacecraft) and other, midway (3?m from the spacecraft). The main science objective of this experiment is to measure the magnitude and nature of the interplanetary magnetic field (IMF) locally and to study the disturbed magnetic conditions and extreme solar events by detecting the CME from Sun as a transient event. The proposed secondary science objectives are to study the impact of interplanetary structures and shock solar wind interaction on geo-space environment and to detect low frequency plasma waves emanating from the solar corona at L1 point. This will provide a better understanding on how the Sun affects interplanetary space.In this paper, we shall give the main scientific objectives of the magnetic field experiment and brief technical details of the FGM onboard Aditya-1 spacecraft.  相似文献   

12.
Double cusps have been observed on a few occasions by polar orbiting spacecraft and ground-based observatories. The four Cluster spacecraft observed two distinct regions, showing characteristics of a double cusp, during a mid-altitude cusp pass on 7 August 2004. The Wind spacecraft detected a southward turning of the Interplanetary Magnetic Field (IMF) at the beginning of the cusp crossings and IMF–Bz stayed negative throughout. Cluster 4 observed a high energy step in the ion precipitation around 1 keV on the equatorward side of the cusp and a dense ion population in the cusp centre. Cluster 1, entering the cusp around 1 min later, observed only a partial ion dispersion with a low energy cutoff reaching 100 eV, together with the dense ion population in the cusp centre. About 9 min later, Cluster 3 entered the cusp and observed full ion dispersion from a few keV down to around 50 eV, together with the dense ion population in the centre of the cusp. The ion flow was directed poleward and eastward in the step/dispersion, whereas in the centre of the cusp the flow was directed poleward and westward. In addition the altitude of the source region of ion injection in the step/dispersion was found 50% larger than in the cusp centre. This event could be explained by the onset of dayside reconnection when the IMF turned southward. The step would be the first signature of component reconnection near the subsolar point, and the injection in the centre of the cusp a result of anti-parallel reconnection in the northern dusk side of the cusp. A three-dimensional magnetohydrodynamic (MHD) simulation is used to display the topology of the magnetic field and locate the sources of the ions during the event.  相似文献   

13.
Broadband electrostatic noise (BEN) is commonly observed in different regions of the Earth’s magnetosphere, eg., auroral region, plasma sheet boundary layer, etc. The frequency of these BENs lies in the range from lower hybrid to the local electron plasma frequency and sometimes even higher. Spacecraft observations suggest that the high and low-frequency parts of BEN appear to be two different wave modes. There is a well established theory for the high-frequency part which can be explained by electrostatic solitary waves, however, low-frequency part is yet to be fully understood. The linear theory of low-frequency waves is developed in a four-component magnetized plasma consisting of three types of electrons, namely cold background electron, warm electrons, warm electron beam and ions. The electrostatic dispersion relation is solved, both analytically and numerically. For the parameters relevant to the auroral region, our analysis predict excitation of electron acoustic waves in the frequency range of 17 Hz to 2.6 kHz with transverse wavelengths in range of (1–70) km. The results from this model may be applied to explain some features of the low-frequency part of the broadband electrostatic noise observed in other regions of the magnetosphere.  相似文献   

14.
Highly modulated waves near electron plasma frequency with both parallel and perpendicular polarization have been observed near diffusion region at dayside and in the tail region. In this paper, two dimensional Particle-In-Cell (PIC) simulation was performed to study the possible generation mechanism of these modulated electron plasma waves. It is shown that weak beam instability could generate the modulated Langmuir wave and the ambient magnetic field plays an important role in the formation of modulation. When the weak beam has loss cone distribution, highly modulated upper hybrid waves are generated and propagate with large angle to the ambient magnetic field. The properties of these modulated waves are discussed and compared with observations.  相似文献   

15.
Nonlinear isolated electrostatic solitary waves (ESWs) are observed routinely at many of Earth’s major boundaries by the Wideband Data (WBD) plasma wave receivers that are mounted on the four Cluster satellites. The current study discusses two aspects of ESWs: their characteristics in the magnetosheath, and their propagation in the magnetosheath and in the auroral acceleration (upward current) region. The characteristics (amplitude and time duration) of ESWs detected in the magnetosheath are presented for one case in which special mutual impedance tests were conducted allowing for the determination of the density and temperature of the hot and cold electrons. These electron parameters, together with those from the ion experiment, were used as inputs to an electron acoustic soliton model as a consideration for the generation of the observed ESWs. The results from this model showed that negative potential ESWs of a few Debye lengths (10–50 m) could be generated in this plasma. Other models of ESW generation are discussed, including beam instabilities and spontaneous generation out of turbulence. The results of two types of ESW propagation (in situ and remote sensing) studies are also presented. The first involves the propagation of bipolar type ESWs from one Cluster spacecraft to another in the magnetosheath, thus obtaining the velocity and size of the solitary structures. The structures were found to be very flat, with large scale perpendicular to the magnetic field (>40 km) and small scale parallel to the field (<1 km). These results were then discussed in terms of various models which predict such flat structures to be generated. The second type of propagation study uses striated Auroral Kilometric Radiation (SAKR) bursts, observed on multiple Cluster satellites, as tracers of ion solitary waves in the upward current region. The results of all studies discussed here (pulse characteristics and ESW velocity, lifetime, and size) are compared to in situ measurements previously made on one spacecraft and to theoretical predictions for these quantities, where available. The primary conclusion drawn from the propagation studies is that the multiple spacecraft technique allows us to better assess the stability (lifetime) of ESWs, which can be as large as a few seconds, than can be achieved with single satellites.  相似文献   

16.
17.
本文给出了暖电子等离子体中各种频率波的射线方向.揭示了射线方向矢量的一些重要特征.特别是当波在暖等离子体相应的冷等离子体谐振区附近,暖等离子体中有一个等离子体波在传播.电子等离子体波可以与寻常波或非常波相联接,并使波能比在一个相应冷等离子体中有更宽的传播角域.   相似文献   

18.
为了建立电磁波在亚波长等离子体薄层中传播的物理数学模型,并针对通信频段的电磁波,研究电磁波在再入航天器表面等离子体薄层中的透射问题,相关研究成果可为再入航天器通信“黑障”现象研究提供理论基础。模型从麦克斯韦方程组出发,采用微分薄层法进行数值求解,获得了不同等离子体密度条件下亚波长等离子体中目标电磁波的透射特性及传播规律,揭示了截止反射效应和碰撞吸收效应在其中发挥的作用。本研究对于深入了解亚波长碰撞等离子体薄层中电磁波的传播过程具有意义。  相似文献   

19.
The whistler-mode waves and electron temperature anisotropy play a key role prior to and during magnetic reconnection. On August 21, 2002, the Cluster spacecrafts encountered a quasi-collisionless magnetic reconnection event when they crossed the plasma sheet. Prior to the southward turning of magnetospheric magnetic field and high speed ion flow, the whistler-mode waves and positive electron temperature anisotropy are simultaneously observed. Theoretic analysis shows that the electrons with positive temperature anisotropy can excite the whistler-mode waves via cyclotron resonances. Using the data of particles and magnetic field, we estimated the whistler-mode wave growth rate and the ratio of whistler-mode growth rate to wave frequency. They are 0.0016fce (Electron cyclotron frequency) and 0.0086fce, respectively. Therefore the whistler-mode waves can grow quickly in the current sheet. The combined observations of energetic electron beams and waves show that after the southward turning of magnetic field, energetic electrons in the reconnection process are accelerated by the whistler-mode waves.  相似文献   

20.
Simulation experiments on spacecraft charging in space plasma and its neutralization are performed in relation to the electron beam experiment (SEPAC) on Space Shuttle Spacelab 1. A spacecraft simulator or a spherical probe is immersed in a magnetized plasma and a positive high voltage with respect to the plasma is externally applied to it. The current-voltage characteristics follow quite well with the theoretical model of Parker and Murphy [1] in the low voltage, low pressure region. When the voltage rises to more than the ionization potential of the surrounding neutral gas, it departs from the model and the effect of plasma production by the electron current becomes very important. The same kind of ionization effect as this has also been observed in our rocket experiments with an electron beam. The enhancement of the ionization effect by an additional neutral gas injection causes a considerable suppression of the potential rise of a spacecraft emitting an electron beam. This is demonstrated with the SEPAC accelerators in a large space chamber experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号