首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
The role of waves in the dynamics of the magnetotail has long been a topic of interest in magnetospheric physics. The characteristics of Electrostatic Solitary Waves (ESWs) associated with reconnection have been studied statistically in the magnetotail by surveying the large amounts data obtained from Waveform Capture (WFC) which is an important component of Plasma Wave Instrument (PWI) on the Geotail spacecraft. About 150 reconnection events with WFC data available are selected, and approximately 10 thousands of ESW waveforms are picked up by hands for statistical study. The ESWs are observed near diffusion region and near the plasma sheet boundary layer (PSBL). Two kinds of waveforms of ESWs are observed: bi-polar and tri-polar pulses. It is found that the pulse width of the ESWs is in the order of 1–5 ms and the peak-to-peak amplitude is in the order of 0.1–5 mV/m. The amplitudes of ESWs are larger in the near-earth tail region than that in deep tail region. ESWs have been observed with or without guide magnetic field 〈By〉. The characteristics of ESWs in different reconnection region and under different strength of guild magnetic field, their possible generation mechanism will be discussed.  相似文献   

2.
The four identical Cluster spacecraft, launched in 2000, orbit the Earth in a tetrahedral configuration and on a highly eccentric polar orbit (4–19.6 RE). This allows the crossing of critical layers that develop as a result of the interaction between the solar wind and the Earth’s magnetosphere. Since 2004 the Chinese Double Star TC-1 and TC-2 spacecraft, whose payload comprise also backup models of instruments developed by European scientists for Cluster, provided two additional points of measurement, on a larger scale: the Cluster and Double Star orbits are such that the spacecraft are almost in the same meridian, allowing conjugate studies. The Cluster and Double Star observations during the 2005 and 2006 extreme solar events are presented, showing uncommon plasma parameters values in the near-Earth solar wind and in the magnetosheath. These include solar wind velocities up to ∼900 km s−1 during an ICME shock arrival, accompanied by a sudden increase in the density by a factor of ∼5 and followed by an enrichment in He++ in the secondary front of the ICME. In the magnetosheath ion density values as high as 130 cm−3 were observed, and the plasma flow velocity there reached values even higher than the typical solar wind velocity. These resulted in unusual dayside magnetosphere compression, detection of penetrating high-energy particles in the magnetotail, and ring current development following several successive injections of energetic particles in the inner magnetosphere, which “washed out” the previously formed nose-like ion structures.  相似文献   

3.
Two orbits were selected in January–February 2006 when the separation between the Cluster spacecraft was large and mirror type magnetic field fluctuations were observed by all spacecraft in different regions of the terrestrial magnetosheath. Minimum variance analysis was applied to find the mirror type fluctuations, and the amplitude of the fluctuations was determined individually. Mirror mode structures are moving along the streamlines frozen in the plasma. A model was developed for the calculation of plasma flowtime from the bow shock to the observation point. The growth rate of the field strength perturbations was estimated by comparing the amplitudes of fluctuations observed simultaneously at distant locations (∼10,000 km) based on the assumption that δB ∼ exp(γt). The obtained growth rate values were about an order of magnitude smaller than those provided by linear models and they decreased in the inner regions of the magnetosheath, indicating some saturation in the growth of the waves when proceeding towards the magnetopause. The results of these two case studies suggest that mirror type fluctuations originate from the compression region downstream of the quasi-perpendicular bow shock, and the growth of the fluctuations cannot be described by linear approximations.  相似文献   

4.
The downward field-aligned current region plays an active role in magnetosphere–ionosphere coupling processes associated with aurora. A quasi-static electric field structure with a downward parallel electric field forms at altitudes between 800 km and 5000 km, accelerating ionospheric electrons upward, away from the auroral ionosphere. Other phenomena including energetic ion conics, electron solitary waves, low-frequency wave activity, and plasma density cavities occur in this region, which also acts as a source region for VLF saucers. Results are presented from high-altitude Cluster observations with particular emphasis on the characteristics and dynamics of quasi-static electric field structures. These, extending up to altitudes of at least 4–5 Earth radii, appear commonly as monopolar or bipolar electric fields. The former occur at sharp boundaries, such as the polar cap boundary whereas the bipolar fields occur at softer boundaries within the plasma sheet. The temporal evolution of quasi-static electric field structures, as captured by the pearls-on-a-string configuration of the Cluster spacecraft, indicates that the formation of electric field structures and of ionospheric plasma density cavities are closely coupled processes. A related feature of the downward current is a broadening of the current sheet with time, possibly related to the depletion process. Preliminary studies of the coupling of electric fields in the downward current region, show that small-scale structures are typically decoupled from the ionosphere, similar to what has been found for the upward current region. However, exceptions are also found where small-scale electric fields couple perfectly between the ionosphere and Cluster altitudes. Recent FAST results indicate that the degree of coupling differs between sheet-like and curved structures, and that it is typically partial. The electric field coupling further depends on the current–voltage relationship, which is highly non-linear in the downward current region, and still unrevealed, as to its specific form.  相似文献   

5.
On TC-1 (Tan Ce 1), the equatorial spacecraft of the Double Star mission, a strong spin-synchronized magnetic interference from the solar panels was observed. In-flight correction techniques for spinning spacecraft that are based on minimizing spin tones in the spin-aligned component and in the magnitude of the ambient magnetic field are therefore not possible in this case. However, due to the fortunate situation that the spacecraft carries two flux-gate magnetometers on the same boom (at 0.5 m distance from each other), the spacecraft field effects could be removed from the spin-averaged data to achieve 0.2 nT relative accuracy, by using a gradiometer technique. Methodology and results are presented. The obtained accuracy allows the use of the data in multi-spacecraft studies together with the Cluster satellites.  相似文献   

6.
分析了2004年3月13日12:15到12:25UT期间TC-1和Cluster卫星簇的磁通门磁力计(FGM)和电子/电流试验仪(PEACE)的联合观测数据.在此期间,TC-1卫星位于日下点以南的磁层顶附近的磁鞘中,并在12:19UT左右观测到了一个典型的先正后负的磁鞘磁通量传输事件(FTE);而Cluster卫星簇位于北半球日侧高纬磁层项附近,并于12:23UT左右穿出磁层顶进入磁鞘,且在12:21 UT左右也观测到了一个典型的先正后负的磁层FTE.比较分析发现此两个FTE具有类似的磁场结构和等离子体特征,可能是同一个北向运动的FTE先后被TC-1和Cluster卫星观测到.利用Cluster 4颗卫星的多点同时观测数据,采用最小方向微分法和时空微分方法,推断Cluster卫星观测的这个FTE是尺度大小约为1.21Re的准二维结构,其运动方向为东北方向,与Cooling模型预测方向基本一致.利用Cooling模型的预测,推算了TC-1卫星在12:19UT观测的FTE的运动速度和尺度,进而得出随着通量管的极向运动,其速度和尺度均有所增加.  相似文献   

7.
We show examples of long period Pc5 magnetic field pulsations near field-aligned current (FAC) regions in the high-latitude magnetosphere, observed by INTERBALL-Au, and coordinated with POLAR, GOES-9 and ground-based observations during 11 January and 11 April 1997. Identification of corresponding magnetosphere regions and subregions is provided by electrons and protons in the energy-range of 0.01–100 keV measured onboard the spacecraft. The ULF Pc5 wave occurrence is observed in both upward and downward FACs. A fairly good correlation is demonstrated between these ULF Pc5 waves and the consecutive injection of magnetosheath low energy protons. The constancy of the observed frequency peak at 1.8 mHz during quite unsteady solar wind pressure conditions could be reconciled with the surface wave mode model. The 3.1 mHz peak location area probably resembles field-line fluctuations with an interesting appearance of poloidal mode oscillation. It is suggested that the 1.3 mHz wave and its harmonic 2.6 mHz represent global compressional oscillations.  相似文献   

8.
最近研究表明,磁层顶凹陷对磁层-电离层耦合具有重要作用.但是,磁层顶凹陷现象的确认需要多颗卫星的联合观测,目前为止报道的磁层顶凹陷事例非常少.本文利用THEMIS5颗卫星的联合观测结果,分析了一例由磁鞘快速流引起的磁层顶凹陷事件.2007年7月21日10:00 UT—10:45 UT,位于日下点磁层顶附近的THEMIS卫星在磁鞘观测到很强的地向流(约400km·-1),随后THEMIS5颗卫星相继穿越磁层顶进入磁层.通过最小方差MVA方法确认局部磁层顶法向,与经典磁层顶模型比较发现,磁鞘快速流压缩磁层顶形成局部凹陷.为了探究此磁鞘快速流的起源,对位于L1点的WIND卫星观测到的太阳风数据进行分析发现:在这个时间段内太阳风条件非常稳定,行星际磁场主要为径向,磁场南北向分量非常小.由此推测此磁鞘快速流的产生很可能与径向行星际磁场有关.   相似文献   

9.
By using data from GPS receivers we detected huge-amplitude solitary large-scale traveling acoustic-gravity waves (LS AGW) which manifested themselves as perturbations of total electron content (TEC) of duration of about 40 min. Originated in the auroral area after significant alterations of geomagnetic field intensity during geomagnetic storms on 29–30 October 2003, LS disturbances propagated with a velocity about 1000–1200 m/s and caused generation of secondary small-scale (SS) waves with time period of 2–10 min. Such SS structure followed the solitary intensive AGW at a distance more than 4000 km. However, we observed such phenomenon only within the territory with high values of “vertical” TEC and steep gradients of TEC. Apparently, these conditions are necessary for generation of SS waves due to propagation of LS AGW.  相似文献   

10.
Double cusps have been observed on a few occasions by polar orbiting spacecraft and ground-based observatories. The four Cluster spacecraft observed two distinct regions, showing characteristics of a double cusp, during a mid-altitude cusp pass on 7 August 2004. The Wind spacecraft detected a southward turning of the Interplanetary Magnetic Field (IMF) at the beginning of the cusp crossings and IMF–Bz stayed negative throughout. Cluster 4 observed a high energy step in the ion precipitation around 1 keV on the equatorward side of the cusp and a dense ion population in the cusp centre. Cluster 1, entering the cusp around 1 min later, observed only a partial ion dispersion with a low energy cutoff reaching 100 eV, together with the dense ion population in the cusp centre. About 9 min later, Cluster 3 entered the cusp and observed full ion dispersion from a few keV down to around 50 eV, together with the dense ion population in the centre of the cusp. The ion flow was directed poleward and eastward in the step/dispersion, whereas in the centre of the cusp the flow was directed poleward and westward. In addition the altitude of the source region of ion injection in the step/dispersion was found 50% larger than in the cusp centre. This event could be explained by the onset of dayside reconnection when the IMF turned southward. The step would be the first signature of component reconnection near the subsolar point, and the injection in the centre of the cusp a result of anti-parallel reconnection in the northern dusk side of the cusp. A three-dimensional magnetohydrodynamic (MHD) simulation is used to display the topology of the magnetic field and locate the sources of the ions during the event.  相似文献   

11.
On October 8, 2004, the Cluster and Double Star spacecraft crossed the near-Earth (12–19 RE) magnetotail neutral sheet during the recovery phase of a small, isolated substorm. Although they were separated in distance by ∼7 RE and in time by ∼30 min, both Cluster and Double Star observed steady, but highly structured Earthward moving >1000 km/s high speed H+ beams in the PSBL. This paper utilizes a global magnetohydrodynamic (MHD) simulation driven by Wind spacecraft solar wind input to model the large-scale structure of the PSBL and large-scale kinetic (LSK) particle tracing calculations to investigate the similarities and differences in the properties of the observed beams. This study finds that the large-scale shape of the PSBL is determined by the MHD configuration. On smaller scales, the LSK calculations, in good qualitative agreement with both Cluster and Double Star observations, demonstrated that the PSBL is highly structured in both time and space, on time intervals of less than 2 min, and spatial distances of the order of 0.2–0.5 RE. This picture of the PSBL is different from the ordered and structured region previously reported in observations.  相似文献   

12.
To make up for the insufficiency of earth-based TT&C systems, the use of GNSS technology for high-orbit spacecraft navigation and orbit determination has become a new technology. It is of great value to applying Geosynchronous Earth Orbit (GEO) and Inclined GeoStationary Orbit (IGSO) navigation satellites for supporting the navigation of high-orbit spacecraft since there are three different types of navigation satellites in BeiDou Navigation Satellite System (BDS): Medium Earth Orbit (MEO), GEO and IGSO. This paper conducts simulation experiments based on Two-Line Orbital Element (TLE) data to analyze and demonstrate the role of these satellites in the navigation of high-orbit spacecraft. Firstly, the spacecraft in GEO was used as the target satellite to conduct navigation experiments. Experiments show that for the spacecraft on the GEO orbit, after adding GEO and IGSO respectively on the basis of receiving MEO navigation satellite signals, the accuracies were improved by 7.22 % and 6.06 % respectively. When adding both GEO and IGSO navigation satellites at the same time, the accuracy can reach 16 m. In the second place, navigation and positioning experiments were carried out on three high elliptical orbit (HEO) satellites with different semimajor axis (32037.2 km, 42385.9 km, 67509.6 km). The experiments show that the number of visible satellites has been improved significantly after adding GEO and IGSO navigation satellites at the same time. The visible satellites in these three orbits were improved by 32.84 %, 41.12 % and 37.68 %, respectively compared with only observing MEO satellites.The RMS values of the navigation positioning errors of these three orbits are 25.59 m, 87.58 m and 712.48 m, respectively.  相似文献   

13.
The CubeSail mission is a low-cost demonstration of the UltraSail solar sailing concept (, ,  and ), using two near-identical CubeSat satellites to deploy a 260 m-long, 20 m2 reflecting film. The two satellites are launched as a unit, detumbled, and separated, with the film unwinding symmetrically from motorized reels. The conformity to the CubeSat specification allows for reduction in launch costs as a secondary payload and utilization of the University of Illinois-developed spacecraft bus. The CubeSail demonstration is the first in a series of increasingly-complex missions aimed at validating several spacecraft subsystems, including attitude determination and control, the separation release unit, reel-based film deployment, as well as the dynamical behavior of the sail and on-orbit solar propulsion. The presented work describes dynamical behavior and control methods used during three main phases of the mission. The three phases include initial detumbling and stabilization using magnetic torque actuators, gravity-gradient-based deployment of the film, and steady-state film deformations in low Earth orbit in the presence of external forces of solar radiation pressure, aerodynamic drag, and gravity-gradient.  相似文献   

14.
The bipolar electric field solitary (EFS) structures have been frequently observed in the near Earth plasma regions, such as auroral zone, magnetopause, cusp regions, and magneto-tail. Sometimes these structures are observed as offset bipolar structures. In this paper, the properties of the offset bipolar EFS structures parallel to the magnetic field are studied with an ion fluid model in a cylindrical symmetry by considering electrostatic condition. The model results show that the offset bipolar EFS structures can develop from both ion-acoustic waves and ion cyclotron waves, and propagate along the magnetic field line in the space plasmas if plasma satisfies some conditions. The offset bipolar EFS structures can have both polarities. It will be first negative pulse and then positive pulse if the initial electric field E0 < 0 or reverse in order if E0 > 0. The amplitude of the offset bipolar EFS structures first decreases and then increases with the wave propagation velocity. Some results from our model are consistent with the observations.  相似文献   

15.
46 magnetosheath crossing events from the two years (2001.2-2003.1) of Cluster magnetic field measurements are identified and used to investigate the characters of the magnetic field fluctuations in the regions of undisturbed solar wind, foreshock, magnetosheath. The preliminary results indicate the properties of the plasma turbulence in the magnetosheath are strongly controlled by IMF orientation with respect to the bow shock normal. The amplitude of the magnetic field magnitude and direction variations behind quasi-parallel bow shock are larger than those behind quasi-perpendicular bow shock. Almost purely compressional waves are found in quasi-perpendicular magnetosheath.  相似文献   

16.
During conditions of northward interplanetary magnetic field (IMF), the near-tail plasma sheet is known to become denser and cooler, and is described as the cold-dense plasma sheet (CDPS). While its source is likely the solar wind, the prominent penetration mechanisms are less clear. The two main candidates are solar wind direct capture via double high-latitude reconnection on the dayside and Kelvin–Helmholtz/diffusive processes at the flank magnetopause. This paper presents a case study on the formation of the CDPS utilizing a wide variety of space- and ground-based observations, but primarily from the Double Star and Polar spacecraft on December 5th, 2004. The pertinent observations can be summarized as follows: TC-1 observes quasi-periodic (∼2 min period) cold-dense boundary layer (compared to a hot-tenuous plasma sheet) signatures interspersed with magnetosheath plasma at the dusk flank magnetopause near the dawn-dusk terminator. Analysis of this region suggests the boundary to be Kelvin–Helmholtz unstable and that plasma transport is ongoing across the boundary. At the same time, IMAGE spacecraft and ground based SuperDARN measurements provide evidence of high-latitude reconnection in both hemispheres. The Polar spacecraft, located in the southern hemisphere afternoon sector, sunward of TC-1, observes a persistent boundary layer with no obvious signature of boundary waves. The plasma is of a similar appearance to that observed by TC-1 inside the boundary layer further down the dusk flank, and by TC-2 in the near-Earth magnetotail. We present comparisons of electron phase space distributions between the spacecraft. Although the dayside boundary layer at Polar is most likely formed via double high-altitude reconnection, and is somewhat comparable to the flank boundary layer at Double Star, some differences argue in favour of additional transport that augment solar wind plasma entry into the tail regions.  相似文献   

17.
Spaceborne GPS receivers are used for real-time navigation by most low Earth orbit (LEO) satellites. In general, the position and velocity accuracy of GPS navigation solutions without a dynamic filter are 25 m (1σ) and 0.5 m/s (1σ), respectively. However, GPS navigation solutions, which consist of position, velocity, and GPS receiver clock bias, have many abnormal excursions from the normal error range for space operation. These excursions lessen the accuracy of attitude control and onboard time synchronization. In this research, a new onboard orbit determination algorithm designed with the unscented Kalman filter (UKF) was developed to improve the performance. Because the UKF is able to obtain the posterior mean and covariance accurately by using the second-order Taylor series expansion through the sampled sigma points that are propagated by using the true nonlinear system, its performance can be better than that of the extended Kalman filter (EKF), which uses the linearized state transition matrix to predict the covariance. The dynamic models for orbit propagation applied perturbations due to the 40 × 40 geo-potential, the gravity of the Sun and Moon, solar radiation pressure, and atmospheric drag. The 7(8)th-order Runge–Kutta numerical integration was applied for orbit propagation. Two types of observations, navigation solutions and C/A code pseudorange, can be used at the user’s discretion. The performances of the onboard orbit determination were verified using real GPS data of the CHAMP and KOMPSAT-2 satellites. The results of the orbit determination were compared with the precision orbit ephemeris (POE) of the CHAMP and KOMPSAT-2 satellites.  相似文献   

18.
The association of quiet-time Pi2 pulsations with the variations of the interplanetary magnetic field (IMF) has been examined by using three reported events, occurring during extremely quiet intervals, of which the first was on 10 March 1997, the second 27 December 1997, and the third 11 May 1999. For the first event, the onset time of ground Pi2s maps to the IMF structure bearing a variation cycle of north-to-south and north again as seen by Wind in the upstream region and Geotail in the magnetosheath. Likewise, the second and the third events have respectively, four and three recurrent turnings propagating to the Earth sensed by multiple satellites. The comparison of geomagnetic perturbations, auroral brightenings, and energetic particle data in the magnetotail with the IMF observations shows successive substorm-like activations accompanied by ground Pi2 onsets. For a clear variation cycle, the first Pi2 burst appears 36 ± 8 min after southward turning of the IMF and the second one follows14 ± 4 min after a northward turning. Moreover, ground Pi2 onsets recur under low IMF clock angle conditions. These observational results can be interpreted with the prevailing models of externally triggered substorm. But the solar wind coupling to the magnetosphere under quiet conditions proceeds in a less efficient way than under substorm time conditions. Consequently, we suggest that recurrent quiet-time Pi2s can be associated with IMF variations and their cause can be the same as those for substorm times.  相似文献   

19.
Considering a three layered configuration of boundary layer bounded by compressible magnetosheath and magnetospheric plasma, the dispersion equation for K-H instability has been derived. In the presence of finite compressibility normal components of wave vectors are non-zero implying propagation normal to the boundary layer. The growth rate for the magnetopause or M-mode is greater than the inner magnetospheric or I-mode surface waves. However, for certain orientations of magnetosheath magnetic field ωiIΩiM and the corresponding phase and group velocities are significant. The amplitude ratio of displacement vectors at the magnetospheric and magnetosheath interfaces is greater for the I-mode than that for the M-mode. These situations are capable of exciting I-mode waves which may transport energy to the inner magnetosphere resulting in field line resonances and generation of micropulsations. The sense of polarization of M-mode and I-mode are the same in the magnetospheric region.  相似文献   

20.
The Mars Express spacecraft carries a low-frequency radar called MARSIS (Mars Advanced Radar for Subsurface and Ionosphere Sounding) that is designed to study the subsurface and ionosphere of Mars. In this paper, we give an overview of the ionospheric sounding results after approximately one year of operation in orbit around Mars. Several types of ionospheric echoes are commonly observed. These include vertical echoes caused by specular reflection from the horizontally stratified ionosphere; echoes from a second layer in the topside ionosphere, possibly associated with O+ ions; oblique echoes from upward bulges in the ionosphere; and a variety of other echoes that are poorly understood. The vertical echoes provide electron density profiles that are in reasonable agreement with the Chapman photo-equilibrium model of planetary ionospheres. On the dayside of Mars the maximum electron density is approximately 2 × 105 cm−3. On the nightside the echoes are often very diffuse and highly irregular, with maximum electron densities less than 104 cm−3. Surface reflections are sometimes observed in the same frequency range as the diffuse echoes, suggesting that small isolated holes exist in the nightside ionosphere, possibly similar to those that occur on the nightside of Venus. The oblique echoes arise from upward bulges in the ionosphere in regions where the crustal magnetic field of Mars is strong and nearly vertical. The bulges tend to be elongated in the horizontal direction and located in regions between oppositely directed arch-like structures in the crustal magnetic field. The nearly vertical magnetic field lines in the region between the arches are thought to connect into the solar wind, thereby allowing solar wind electrons to heat the lower levels of the ionosphere, with an attendant increase in the scale height and electron density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号