首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 907 毫秒
1.
In 2001, 2002 and 2003, the Polar spacecraft probed the near equatorial plasma sheet at 9 RE near local midnight. Using the magnetic field observations, the signatures at substorm onsets are studied. Close to the flux pile-up region, the Polar spacecraft readily detects the dipolarization front, especially for pseudo onsets. An event with two distinct onsets has been examined. The signatures are found to be consistent with the multiple-onset model suggested by Russell [Russell, C.T. How northward turnings of the IMF can lead to substorm expansion onsets. Geophys. Res. Lett. 27, 3257–3259, 2000] which is a modified Near-Earth Neutral Line (NENL) model. Another similar event is also examined showing the effects of different Interplanetary Magnetic Field (IMF) conditions upon substorms. Moreover, ground effects can be very weak compared to in situ observations, especially for pseudo onsets, because these signatures appear to be localized and not global.  相似文献   

2.
Using ACE and SOHO data the origin of quiet-time low-energy particle fluxes at 1 AU is studied in the 23rd solar cycle. One of the selection criteria of quiet-time periods is to demand that H/He < 10 provided that periods with noticeable contribution of remnants of gradual events have been excluded from consideration. Our results suggest different origin of 0.03–3 MeV/nucleon particles – different seed populations accelerated and different acceleration processes. During the ascending, maximum and descending phases of solar activity quiet-time ions consist of coronal particles accelerated to suprathermal energies in about a half of the quiet periods, the rest of quiet-time fluxes originates from particle acceleration in processes similar to those in small impulsive solar flares rich in Fe. At solar minimum the bulk solar wind particles serve as seed population.  相似文献   

3.
During a typical Akasofu-type of substorm, the southward component of IMF Bz is necessary prior to the onset. However, a sudden compression of solar wind, if intense enough, can also sometimes trigger a substorm, and is independent of the IMF orientation. The Akasofu-type substorm and the Impulse-induced substorm may differ in their occurrence mechanism and ground-based observations. This is shown using the initial four substorm events discussed in this paper having distinctly different IMF and sudden impulse conditions. A question then arises is how will these signatures vary when both sudden impulse and a southward component of IMF Bz are present prior to the onset. To account for the same, we analyze two substorm events of 05th April 2010 and 22nd June 2015. The substorm onsets on these days not just coincided with the sudden impulse but also a southward component of IMF Bz was present prior to the onsets. The present study accounts for the similarities and differences among isolated IMF induced substorms, isolated impulse-induced substorms and when both sudden impulse and a southward component of IMF Bz are present. We examined the relative dominance between the two factors in triggering a substorm using ground-based and satellite-based observations. If IMF Bz is near zero, a strong pressure pulse and/or large IMF By can lead to particle precipitation away from the usual midnight. To further ensure whether a pressure pulse or IMF By predominantly influences the substorm onset location, a statistical analysis of isolated substorms will be needed.  相似文献   

4.
The CEPPAD Imaging Proton Spectrometer on the POLAR spacecraft has proven to perform very well as an Energetic Neutral (ENA) atom imager, despite the fact that it was designed primarily for measuring energetic ions in-situ. ENAs emitted from the ring current can be detected during storm- as well as quiet-time conditions and can be monitored continuously for many hours at a time when Polar is situated in the polar cap. In addition, we are able to routinely detect ‘bursts’ of ENA emissions in response to substorm-associated ion injections. In this paper, we present ENA images of a single such event together with global auroral imager data from the POLAR VIS instrument. LANL geosynchronous energetic particle data, and ground magnetic Pi2 data in order to establish that such bursts are indeed caused by substorm injections.  相似文献   

5.
Periodicity in occurrence of magnetic disturbances in polar cap and auroral zone under conditions of steady and powerful solar wind influence on the magnetosphere is analyzed on the example of 9 storm events with distinctly expressed sawtooth substorms (N = 48). Relationships between the polar cap magnetic activity (PC-index), magnetic disturbances in the auroral zone (AL-index) and value of the ring current asymmetry (ASYM index) were examined within the intervals of the PC growth phase and the PC decline phase inherent to each substorm. It is shown that the substorm sudden onsets are always preceded by the PC growth and that the substorm development does not affect the PC growth rate. On achieving the disturbance maximum, the PC and AL indices are simultaneously fall down to the level preceding the substorm, so that the higher the substorm intensity, the larger is the AL and PC drop in the decline phase. The ASYM index increases and decreases in conformity with the PC and AL behavior, the correlation between ASYM and PC being better than between ASYM and AL. Level of the solar wind energy input into the magnetosphere determines periodicity and intensity of disturbances: the higher the coupling function EKL, the higher is substorm intensity and shorter is substorm length. Taking into account the permanently high level of auroral activity and inconsistency of aurora behavior and magnetic onsets during sawtooth substorms, the conclusion is made that auroral ionosphere conductivity is typically high and ensures an extremely high intensity of field-aligned currents in R1 FAC system. The periodicity of sawtooth substorms is determined by recurrent depletions and restorations of R1 currents, which are responsible for coordinated variations of magnetic activity in the polar cap and auroral zone.  相似文献   

6.
磁层亚暴是太阳风–磁层–电离层耦合过程中的重要爆发性事件,其特性受太阳风参数的影响很大。本文利用对IMAGE卫星在2000 - 2005年观测到的4193个亚暴起始事件,统计研究了在不同的行星际磁场(IMF)Bz 条件下亚暴起始位置和膨胀相持续时间。结果表明,南向IMF发生的亚暴比北向IMF下发生的亚暴要多。南向IMF条件下亚暴AE指数最大值的平均值基本上>600 nT,并有随南向IMF持续时间增大而增大的趋势。北向IMF条件下亚暴AE指数最大值的平均值基本上<500 nT,并有随北向IMF持续时间增大而减小的趋势。亚暴的起始磁纬度基本上位于65° - 70°之间。当南向IMF或北向IMF的持续时间增大,超过80 min时,北半球的亚暴起始磁纬度会降低。亚暴起始磁地方时大部分位于22:15 - 23:15 MLT之间。但整体分布比较分散,显示不出特别清晰的随IMF Bz持续时间变化的趋势。相比于南向的IMF,北向IMF期间发生亚暴的平均膨胀相持续时间增大了将近10 min,表明南向IMF期间,亚暴强度虽然较大,但其膨胀相持续时间较短,亚暴能量释放和耗散的速度更快。   相似文献   

7.
Substorm onset timing is a critical issue in magnetotail dynamics research. Solar wind energy is accumulated in the magnetosphere and the configuration of the magnetosphere evolves toward an unstable state during the growth phase. At some point, the expansion phase begins and the stored energy is released through a variety of processes that return the magnetosphere to a lower energy state. In recovery the various processes die away. Unfortunately, the ground and magnetospheric signatures of onset, i.e. energy release, can be seen both in the growth phase prior to onset and in the expansion phase after onset. Some investigators refer to each of these events as a substorm. Tail observations suggest that most substorms have one event that differentiates the behavior of the tail field and plasma. We refer to this time as the “main substorm onset”. Each substorm associated phenomenon is timed independently and then compared with main substorm onsets. ISEE-2 tail observations are used to examine the tail lobe magnetic conditions associated with substorms because ISEE-2 orbit has a high inclination and frequently observes lobe field. Approximately 70 ∼ 75% of tail lobe Bt and Bz change are associated with the main substorm onset. If the satellite is more than 3 Re above (below) the neutral sheet, 86% (57%) of plasma pressure dropouts are associated with substorms. We interpret our results as evidence that the effect of the growth phase is to drive the magnetosphere towards instability. As it approaches global instability local regions become temporarily unstable but are rapidly quenched. Eventually one of these events develops into the global instability that releases most of the stored energy and returns the magnetosphere to a more stable configuration.  相似文献   

8.
Substorm onsets, identified by Pi2 pulsations observed on the AFGL Magnetometer Network, have been studied using ISEE 1 electric and magnetic field data and GOES 2 and GOES 3 magnetic field data. The relative positions of the spacecraft with respect to the substorm current system were determined from the Pi2 polarizations. One onset occurred when ISEE 1 and GOES 2 were on the same field line but in opposite hemispheres. During this onset ISEE 1 and GOES 2 observed magnetic signatures which appear to be due to conjugate field-aligned-currents flowing out of the western edge of the westward electrojets. A broadband burst of wave noise was seen in the ISEE 1 electric field at the same time as field-aligned-currents were observed. These may be current driven ion cyclotron waves. A three minute perturbation in the electric field data prior to the initial substorm onset indicates that there was an azimuthal westward flow of plasma starting ~ 1 min before the substorm onset.  相似文献   

9.
Investigation results of a diffuse aurora (DA) and stable auroral red (SAR) arc dynamics based on spectrophotometric observations at the Yakutsk meridian (199°E geomagnetic longitude) are presented. The relationship of an equatorward extension of DA in the 557.7 nm emission to a substorm growth phase during the magnetospheric convection intensification after the turn of IMF BZ to the south is shown. The formation of SAR arc during the substorm expansion phase is investigated. The association of SAR arc dynamics with the development of asymmetric ring current (substorm injection) during the main phase of a storm is analyzed. It is shown how the pulsating precipitations of energetic ring current particles develop in the outer plasmasphere based on photometric observations.  相似文献   

10.
We report on the analysis of two fast CME-driven shocks observed with the UltraViolet Coronagraph Spectrometer (UVCS) on board the Solar and Heliospheric Observatory (SOHO). The first event, detected on 2002 March 22 at 4.1 R with the UVCS slit placed in correspondence with the flank of the expanding CME surface, represents the highest UV detection of a shock obtained so far with the UVCS instrument in the corona. The second one, detected on 2002 July 23 at 1.6 R with the UVCS slit placed in correspondence with the front of the expanding CME surface, shows an anomalous deficiency of ion heating with respect to what observed in previous CME/shocks observed by UVCS, possibly reflecting the effect of different coronal plasma conditions over the solar cycle. From the two different sets of observations we derived an estimate for the shock compression ratio X, which turns out to be X = 2.4 ± 0.2 and X = 2.2 ± 0.1, respectively, for the first and second event. Comparison between the two events provides complementary perspectives on the dynamical evolution of CME-driven shocks.  相似文献   

11.
利用Cluster,TC-1以及中国和欧洲在中低纬六个地面台站的数据,分析了2004年10月22日1700-1930 UT发生的三次BBF事件过程中地面和近地空间磁场脉动的特性.这三次BBF事件都发生在地磁活动的平静时期.结果发现,有两次平静时期的BBF确实对应着阻尼型Pi2脉动,并且脉动的特征与以前观测结果中的特征类似.在第一次BBF事件中,空间观测和地面观测均发现了Pi2脉动;在第二次事件中,地面观测到了Pi2脉动,而空间没有观测到Pi2脉动;在第三次事件中,空间和地面观测都没有发现Pi2脉动.这些观测事实说明BBF所激发的Pi2脉动特征是相当复杂的,而且并不是所有BBF都能产生Pi2脉动,所以到底BBF在什么条件下可以产生Pi2仍然是一个没有解决的问题.   相似文献   

12.
利用2004年地磁西向电急流 AL指数, 亚暴电急流AE指数和场向电流AF指数来确定亚暴起始, 并与2004年亚暴极光起始进行对比. 研究发现, 如果以极光亚暴起始为时间零点, 亚暴的西向电急流AL起始和电急流AE起始主要分布于-5~+6 min的时间范围内, 但在-9~+9 min的时间范围内也有个别事例. 场向电流 AF 起始分布较宽, 可以分布于-8~+7 min的时间范围内. 平均西向电急流AL起始, 电急流AE起始和场向电流AF起始分别为0.5, 0.5, -0.1min. 通常西向电急流AL起始与极光起始同时的概率最高, 而多数情况下电急流AE起始和场向电流AF起始提前极光起始1min. 这些地面磁场指数确定的亚暴起始分布, 随着亚暴强度的增大(即最小AL指数减少, 最大AE指数增大, 最大AF指数增大)而向极光亚暴起始靠近. 对于5个超级亚暴来说, 其西向电急流AL起始和电急流AE起始都发生在极光起始之前. 这些结果说明对于大亚暴, 电急流的增加要早于极光爆发.   相似文献   

13.
An analysis of properties and peculiarities of the nighttime winter foF2 increases (NWI) in the East Siberia is made on data of ionospheric station Irkutsk in the periods 1958–1992 and 2002–2009 and the empirical model of the F2 layer critical frequency under the geomagnetic quiet conditions deduced from these data (model Q-F2). It is revealed, that the NWI is the stable regularity of the quiet ionosphere over Irkutsk. The amplitude of the NWI (the difference between maximum and minimum foF2 values at night hours) is the greatest in December–January and nearly the same at low and middle solar activity. It is a peculiarity of the quiet ionosphere in the East Siberia. Maximum in night foF2 under quiet geomagnetic conditions is observed mainly after midnight (02-04 LT) and is shifted to predawn hours as solar activity increases. At low solar activity the quiet ionosphere at ∼02–04 LT shows the following properties: (a) the fluctuations of foF2 and hmF2 are in the reverse correlation but this dependence is weak; (b) very strong fluctuations of foF2 (|δfoF2| > 30%) occur seldom (∼4% of events) and almost all of them are positive; an example of very strong fluctuations of foF2 up to 60% can be an extreme increase in the foF2 on 19.12.2008; (c) the very strong enhancements of foF2 in the NWI maximum can be observed at the low geomagnetic activity, they occur more often during substorms but very seldom during geomagnetic storms. Possible reasons of these properties of NWI are discussed.  相似文献   

14.
We study the temporal evolution of the power rigidity spectrum of the first (27 days) and the second (14 days) harmonics of the 27-day variation of the galactic cosmic ray intensity measured by neutron monitors in the period of 1965–2002. The rigidity spectrum of these variations can be approximated by a power law. We show the rigidity spectra of the first and the second harmonics of the 27-day variation of the galactic cosmic ray intensity have similar time profiles. These spectra are hard (γ ≈ 0.5 ± 0.1) and soft (γ ≈ 1.1 ± 0.2) during solar maximum and minimum activity, respectively. We ascribe this to the alternation of the sizes of the modulation regions responsible for the 27-day variation of the galactic cosmic ray intensity in different epochs of solar activity. Especially, the average radial sizes of the modulation regions of the 27-day variation and the heliolatitudinal extension of the heliolongitudinal asymmetry are smaller during solar minimum than during solar maximum. We show also, that the temporal changes of the power rigidity spectra of the first and the second harmonics of the 27-day variation of the galactic cosmic ray intensity are in a negative correlation with the changes of the rigidity spectrum of the corresponding 11-year variation.  相似文献   

15.
We present results for the global elastic parameters h2 and l2 derived from the analysis of Satellite Laser Ranging (SLR) data. SLR data for the two satellites LAGEOS 1 and LAGEOS 2 observed during 2.5 years from January 3, 2005 until July 1, 2007 with 18 globally distributed ground stations were analysed using different approaches. The analysis was done separately for the two satellites and approaches to estimate the two elastic parameters independently and together were performed. We do a sequential analysis and study the stability of the estimates as a function of length of the data set used. The adjusted final values for h2 equal to 0.6151 ± 0.0008 and 0.6152 ± 0.0008, and those for l2 equal to 0.0886 ± 0.0003 and 0.0881 ± 0.0003 for LAGEOS 1 and LAGEOS 2 tracking data are compared to other independently derived estimates. These parameters and their errors achieve stability at about the 24 and 27 month time interval for h2 and l2, respectively.  相似文献   

16.
The incoherent scatter radar (ISR) facility in Kharkov, Ukraine (49.6°N, 36.3°E) measures vertical profiles of electron density, electron and ion temperature, and ion composition of the ionospheric plasma up to 1100 km altitude. Acquired measurements constitute an accurate ionospheric reference dataset for validation of the variety of models and alternative measurement techniques. We describe preliminary results of comparing the Kharkov ISR profiles to the international reference ionosphere (IRI), an empirical model recognized for its reliable representation of the monthly-median climatology of the density and temperature profiles during quiet-time conditions, with certain extensions to the storm times. We limited our comparison to only quiet geomagnetic conditions during the autumnal equinoxes of 2007 and 2008. Overall, we observe good qualitative agreement between model and data both in time and with altitude. Magnitude-wise, the measured and modeled electron density and plasma temperatures profiles appear different. We discovered that representation accuracy improves significantly when IRI is driven by observed-averaged values of the solar activity index rather than their predictions. This result motivated us to study IRI performance throughout protracted solar minimum of the 24th cycle. The paper summarizes our observations and recommendations for optimal use of the IRI.  相似文献   

17.
Radiometric measurements of the thermal radiation originating from the moon’s surface were obtained using an infrared detector operating at wavelengths between 8 and 14 μm. The measurements cover a full moon cycle. The variation of the moon’s temperature with the lunar phase angle was established. The lunar temperatures were 391 ± 2.0 K for the full moon, 240 ± 3.5 K for the first quarter, and 236 ± 3 K for the last quarter. For the rest of the phase angles, the lunar temperature varied between 170 and 380 K. Our results are comparable with those obtained previously at these phase angles. For the new moon phase, the obtained temperature was between 120 and 133 K. With the exception of the new moon phase, our measurements at all the phase angles were consistent with those obtained using Earth-based data and those obtained by the Diviner experiment and the Clementine spacecraft. At the new phase, our measurements were comparable with those obtained from the ground but were significantly higher than those obtained by the Diviner and Clementine data. We attribute this inconsistency to either the calibration curve of our detector, which does not perform well at very low temperatures, or to infrared emission from the atmosphere. A simple linear model to predict the lunar temperature as a function of the phase angle was proposed. The experimental errors that affect the measured temperatures are discussed.  相似文献   

18.
The Earth’s magnetosphere response to interplanetary medium conditions on January 21–22, 2005 and on December 14–15, 2006 has been studied. The analysis of solar wind parameters measured by ACE spacecraft, of geomagnetic indices variations, of geomagnetic field measured by GOES 11, 12 satellites, and of energetic particle fluxes measured by POES 15, 16, 17 satellites was performed together with magnetospheric modeling based in terms of A2000 paraboloid model. We found the similar dynamics of three particle populations (trapped, quasi-trapped, and precipitating) during storms of different intensities developed under different external conditions: the maximal values of particle fluxes and the latitudinal positions of the isotropic boundaries were approximately the same. The main sources caused RC build-up have been determined for both magnetic storms. Global magnetospheric convection controlled by IMF and substorm activity driven magnetic storm on December 14–15, 2006. Extreme solar wind pressure pulse was mainly responsible for RC particle injection and unusual January 21, 2005 magnetic storm development under northward IMF during the main phase.  相似文献   

19.
Performance of efficient single-person cardiopulmonary resuscitation (CPR) is vital to maintain cardiac and cerebral perfusion during the 2–4 min it takes for deployment of advanced life support during a space mission. The aim of the present study was to investigate potential differences in upper body muscle activity during CPR performance at terrestrial gravity (+1Gz) and in simulated microgravity (μG). Muscle activity of the triceps brachii, erector spinae, rectus abdominis and pectoralis major was measured via superficial electromyography in 20 healthy male volunteers. Four sets of 30 external chest compressions (ECCs) were performed on a mannequin. Microgravity was simulated using a body suspension device and harness; the Evetts–Russomano (ER) method was adopted for CPR performance in simulated microgravity. Heart rate and perceived exertion via Borg scores were also measured. While a significantly lower depth of ECCs was observed in simulated microgravity, compared with +1Gz, it was still within the target range of 40–50 mm. There was a 7.7% decrease of the mean (±SEM) ECC depth from 48 ± 0.3 mm at +1Gz, to 44.3 ± 0.5 mm during microgravity simulation (p < 0.001). No significant difference in number or rate of compressions was found between the two conditions. Heart rate displayed a significantly larger increase during CPR in simulated microgravity than at +1Gz, the former presenting a mean (±SEM) of 23.6 ± 2.91 bpm and the latter, 76.6 ± 3.8 bpm (p < 0.001). Borg scores were 70% higher post-microgravity compressions (17 ± 1) than post +1Gz compressions (10 ± 1) (p < 0.001). Intermuscular comparisons showed the triceps brachii to have significantly lower muscle activity than each of the other three tested muscles, in both +1Gz and microgravity. As shown by greater Borg scores and heart rate increases, CPR performance in simulated microgravity is more fatiguing than at +1Gz. Nevertheless, no significant difference in muscle activity between conditions was found, a result that is favourable for astronauts, given the inevitable muscular and cardiovascular deconditioning that occurs during space travel.  相似文献   

20.
Double cusps have been observed on a few occasions by polar orbiting spacecraft and ground-based observatories. The four Cluster spacecraft observed two distinct regions, showing characteristics of a double cusp, during a mid-altitude cusp pass on 7 August 2004. The Wind spacecraft detected a southward turning of the Interplanetary Magnetic Field (IMF) at the beginning of the cusp crossings and IMF–Bz stayed negative throughout. Cluster 4 observed a high energy step in the ion precipitation around 1 keV on the equatorward side of the cusp and a dense ion population in the cusp centre. Cluster 1, entering the cusp around 1 min later, observed only a partial ion dispersion with a low energy cutoff reaching 100 eV, together with the dense ion population in the cusp centre. About 9 min later, Cluster 3 entered the cusp and observed full ion dispersion from a few keV down to around 50 eV, together with the dense ion population in the centre of the cusp. The ion flow was directed poleward and eastward in the step/dispersion, whereas in the centre of the cusp the flow was directed poleward and westward. In addition the altitude of the source region of ion injection in the step/dispersion was found 50% larger than in the cusp centre. This event could be explained by the onset of dayside reconnection when the IMF turned southward. The step would be the first signature of component reconnection near the subsolar point, and the injection in the centre of the cusp a result of anti-parallel reconnection in the northern dusk side of the cusp. A three-dimensional magnetohydrodynamic (MHD) simulation is used to display the topology of the magnetic field and locate the sources of the ions during the event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号