首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
研究了磁层-电离层-热层耦合星座(MIT)卫星计划中高能中性原子成像仪(NAIS-H)探测方案的原理设计和模拟仿真. 以双星中性原子成像仪设计思想为基础,依据MIT卫星计划的总体科学目标和磁层卫星的轨道环境及相应自旋姿态,给出中性原子成像仪的技术架构,并针对地磁偶极场的环电流模型进行了模拟仿真. 仿真结果表明,所研制的NAIS-H以其高时空分辨能力适用于监测和反演磁暴期间磁层等离子体的全球动力学过程.   相似文献   

2.
The Magnetospheric Imaging Instrument (MIMI) on the Cassini spacecraft has observed energetic neutral atoms (ENA) and charged particles at Saturn from mid-2004 to the present. The particles often but not always reveal striking periodic behavior that seems to depend on the type of particle and spacecraft location. When subjected to a Lomb periodogram analysis, energetic electrons (>150 keV) exhibited strong frequency peaks near 10.80 h (the nominal or “base” period of Saturn kilometric radiation) during 2006–2008, but essentially no periodicity during 2005. The electron periodograms also show pronounced “double” frequency peaks in 2007 and 2008. Energetic protons (3–26 keV) show strong peaks near the same period for 2005–2007, but none for 2008. Oxygen ions at the same energies display strong peaks for 2005 and 2006, but not for 2007 and 2008. By projecting the ENA images onto Saturn’s equatorial plane or onto a plane perpendicular to the equatorial plane and then summing the data in the appropriate dimension, “strip” images can be constructed from which a time history can be derived. These time histories of ENA emissions are also subjected to a Lomb periodogram analyses. The energetic hydrogen neutrals (20–50 keV) exhibited periodic behavior only during 2007, while energetic oxygen neutrals (64–144 keV) displayed a strong SKR-like period in 2005 and 2006 but not for 2007 or 2008. Some of this behavior may be due to changing spacecraft aspect relative to the ENA emissions, and some of it may be real. This periodic behavior may be consistent with a rotating anomaly that “flashes” brightly in the midnight-to-dawn sector once per 10.8 h, with the flash parameters depending on particle species and energy.  相似文献   

3.
与地球不同,月球暴露在太阳风中.太阳风注入到月面,与月壤相互作用,部分太阳风质子以能量中性原子(Energetic Neutral Atom,ENA)的形式被月表散射.另外,月球局部地区的磁异常能阻挡太阳风到达月面,并形成微磁层,成为月面天然的保护屏障.然而以往相关的观测数据都来自轨道器,月面的真实情况无从知晓.嫦娥四...  相似文献   

4.
TC-2卫星携带了高能中性原子成像仪.在理论上可以根据对中性原子的探测通过反演获得磁层中环电流的空间分布.开发了一种新的反演技术和算法来反演环电流的分布.文中将层析成像技术引入反演环电流区离子分布,把磁层空间环电流区域划分为网格并依据层析成像常用的代数重建法反演环电流的分布.反演前后的电流离子分布具有一致性,证实了这种反演方法的可行性.通过对比反演结果与初始分布,模型通过较少的假设和简单的步骤就可以获得全面的环电流信息.   相似文献   

5.
The sounding rocket POLAR 5 carried a 10 keV electron accelerator and various diagnostic instruments in a mother-daughter configuration. Onboard wave receivers recorded several types of VLF wave phenomena directly associated with the operation of the accelerator, with delays from 5 to 50 ms after the injection of the electrons. These delayed after-effects range from broadband noise, f > 3 kHz, observed above 170 km, through narrow band emissions at 2 and 5.6 kHz which appeared when the rocket crossed a region with precipitation of energetic electrons, to emissions covering frequencies from 3–4 to well above 100 kHz observed within the E-region (150-95 km). The latter was also associated with apparent changes in electron density. The observed emission properties indicate that the region perturbed by the beam and the neutralizing return current to the daughter may be a favoured generation region.  相似文献   

6.
Observations of hard X-ray (HXR)/γ-ray continuum and γ-ray lines produced by energetic electrons and ions, respectively, colliding with the solar atmosphere, have shown that large solar flares can accelerate ions up to many GeV and electrons up to hundreds of MeV. Solar energetic particles (SEPs) are observed by spacecraft near 1 AU and by ground-based instrumentation to extend up to similar energies as in large SEP events, but it appears that a different acceleration process, one associated with fast coronal mass ejections is responsible. Much weaker SEP events are observed that are generally rich in electrons, 3He, and heavy elements. The energetic particles in these events appear to be similar to those accelerated in flares. The Ramaty high energy solar spectroscopic imager (RHESSI) mission provides high-resolution spectroscopy and imaging of flare HXRs and γ-rays. Such observations can provide information on the location, energy spectra, and composition of the flare accelerated energetic particles at the Sun. Here, preliminary comparisons of the RHESSI observations with observations of both energetic electron and ion near 1 AU are reviewed, and the implications for the particle acceleration and escape processes are discussed.  相似文献   

7.
A current serious limitation on the studies of solar energetic particle (SEP) events is that their properties in the inner heliosphere are studied only through in situ spacecraft observations. Our understanding of spatial distributions and temporal variations of SEP events has come through statistical studies of many such events over several solar cycles. In contrast, flare SEPs in the solar corona can be imaged through their radiative and collisional interactions with solar fields and particles. We suggest that the heliospheric SEPs may also interact with heliospheric particles and fields to produce signatures which can be remotely observed and imaged. A challenge with any such candidate signature is to separate it from that of flare SEPs. The optimum case for imaging high-energy (E > 100 MeV) heliospheric protons may be the emission of π0-decay γ-rays following proton collisions with solar wind (SW) ions. In the case of E > 1 MeV electrons, gyrosynchrotron radio emission may be the most readily detectible remote signal. In both cases we may already have observed one or two such events. Another radiative signature from nonthermal particles may be resonant transition radiation, which has likely already been observed from solar flare electrons. We discuss energetic neutrons as another possible remote signature, but we rule out γ-ray line and 0.511 MeV positron annihilation emission as observable signatures of heliospheric energetic ions. We are already acquiring global signatures of large inner-heliospheric SW density features and of heliosheath interactions between the SW and interstellar neutral ions. By finding an appropriate observable signature of remote heliospheric SEPs, we could supplement the in situ observations with global maps of energetic SEP events to provide a comprehensive view of SEP events.  相似文献   

8.
能量中性原子(Energetic Neutral Atoms, ENA, 简称能原子)是指在日球层内外空间, 拥有>0.1keV动能的原子.在此空间领域并没有温度>106K的中性气体, 但却充满动能>0.1keV的正离子.因此能原子A应该是A+离子与原地稀薄气体B原子或分子交换电荷所产生的, 即A++BA+B+. 电荷交换涉及极小的动能变化, 新生的能原子A和离子B+基本上各自保持原有动能. 离子B+随即被当地磁场俘获, 能原子A则脱离磁场约束并携带其原属离子群的成分和能量信息而直线运动, 成为遥测空间等离子体的有效媒介. 美国人造卫星 IBEX (Interstellar Boundary Explorer) 直接探测得到来自日球层以外星际空间的能原子, 大幅延伸了利用能原子遥测空间等离子体的领域. 本文据此论述了空间能原子的发现, 综述了探测空间能原子的基本概念与实例、取得的主要成果、仪器设计和研制进展以及未来空间利用能原子遥测的发展趋势.   相似文献   

9.
在极紫外波段对太阳进行成像观测是研究太阳活动、日冕中等离子体物理特性的重要手段.传统极紫外成像仪或光谱仪无法同时实现高光谱分辨率和大视场的太阳成像.本文设计了一种新型太阳极紫外多谱段成像系统,采用无狭缝光栅分光方式实现了高光谱分辨率和空间分辨率的全日面成像,成像视场可达47',光谱分辨率每像素2×10-3 nm,空间分辨率每像素1.4',全日面时间分辨率优于60s.通过分析谱线的全日面成像图和系统响应,表明成像仪能大范围的观测太阳活动形态演化,为太阳物理研究和空间天气预报提供更完整的观测数据.   相似文献   

10.
Observed galactic cosmic ray intensity can be subjected to a transient decrease. These so-called Forbush decreases are driven by coronal mass ejection induced shockwaves in the heliosphere. By combining in situ measurements by space borne instruments with ground-based cosmic ray observations, we investigate the relationship between solar energetic particle flux, various solar activity indices, and intensity measurements of cosmic rays during such an event. We present cross-correlation study done using proton flux data from the SOHO/ERNE instrument, as well as data collected during some of the strongest Forbush decreases over the last two completed solar cycles by the network of neutron monitor detectors and different solar observatories. We have demonstrated connection between the shape of solar energetic particles fluence spectra and selected coronal mass ejection and Forbush decrease parameters, indicating that power exponents used to model these fluence spectra could be valuable new parameters in similar analysis of mentioned phenomena. They appear to be better predictor variables of Forbush decrease magnitude in interplanetary magnetic field than coronal mass ejection velocities.  相似文献   

11.
Energetic neutral atom (ENA) images of the storm-time ring current obtained from the ISEE-1 spacecraft provide information for a “zero-order” global model of the energetic ion distribution. With the assumption of isotropic pressure and magnetostatic, non-convective pressure balance, the global system of electrical currents driven by the ion pressure can be calculated using Euler potentials for the divergenceless current density. Radial pressure gradients drive azimuthal currents, and azimuthal pressure gradients drive radial currents. The radial currents cause current lines in the inner magnetosphere to close in the ionosphere, forming a “partial” ring current. The intensities and locations of these field-aligned currents driven into and out of the ionosphere resemble those of the observed Region 2 current system, but not all observed properties of the Region 2 system are reproduced by the “zero-order” model.  相似文献   

12.
There is increasing evidence suggesting that coronal acceleration supplies at least part of the particles observed during solar energetic particle events, yet coronal processes tend to be mostly disregarded in these studies. This is often due to the fact that the coronal restructuring in the early development of the associated flare and/or coronal mass ejection event is extremely fast (on the order of a few minutes) and can encompass most of the solar disk, thus requiring a full disk solar imager with very high time-cadence, and wide spectral coverage. An important subset of the energetic particle events are the near-relativistic impulsive electron events detected near Earth: their onsets can be traced back to a release time in the low corona with accuracies on the order of a couple of minutes. We investigate a series of impulsive electron events from 1998 to 2001 using energetic electron data measured in situ by the Electron, Proton, and Alpha Monitor (EPAM) experiment on the Advanced Composition Explorer (ACE) spacecraft, and radio coronal observations from the Nanqay Radioheliograph, the Decametric Array from Nanqay and the WAVES experiment on the WIND spacecraft. EPAM measures electrons in the energy range from 40 to 300 keV over a wide range of look directions and with better than 1 minute time resolution, while the Nançay radioheliograph provides images of the solar corona at 5 different frequencies with time cadence of 8 images per second and per frequency. This study focuses on the events which correspond to a delay, between the inferred injection times of the electrons at the Sun, and the electromagnetic emissions from flares, of at least 5 minutes. Radio signatures are found near the estimated time of the electron release for each of the events. The timing and spectral characteristics of the radio emissions, when compared with the properties of the particles seen at EPAM, strongly support an acceleration process in the corona but at highly variable heights from one event to the other.  相似文献   

13.
Emissions from solar flares may reveal fast fluctuations, which can be attributed to small-scale injections of energetic electrons. In this paper, we perform numerical calculations of the Hα emission from a flaring atmosphere bombarded by a pulsating electron beam. We assume that the variation of the electron beam flux consists of two components: a fluctuation component and a background component. The results show that the amplitude of Hα fluctuations varies depending on the magnitude of the background flux of the electron beam. In the case of a higher background flux, the Hα fluctuations are more significant than in the case of a lower background flux. This result is compatible with the observations in which the Hα fluctuations appear preferentially near the hard X-ray maximum.  相似文献   

14.
The transport of energetic particles in the presence of magnetic turbulence can exhibit a variety of regimes different from the standard quasilinear diffusion. Here we discuss a number of solar and space problems where nonquasilinear diffusion is found, and then we illustrate anomalous transport regimes, for which the mean square deviation grows nonlinearly with time. In particular, we concentrate on superdiffusive regimes, and show what is the theoretical framework which is to be used to describe superdiffusion. We discuss the results of numerical simulations which show that superdiffusive and subdiffusive regimes are possible, and describe data analyses which allow to single out the superdiffusive transport from the observation of energetic particle profiles upstream of interplanetary shocks. The implications of superdiffusion on the efficiency of wave particle interactions are also discussed.  相似文献   

15.
It has generally been assumed that a geomagnetic storm is entirely driven by external forces—e.g., solar wind Ey = Vx × Bz, Vx, V2x (where the components of the electric field, E, the magnetic field, B, and velocity, V, are given in GSE coordinates)—which would imply that particle injections in the ring current (RC) or outer radiation belts should be highly correlated. However the data from ISTP are showing that the magnetosphere can have at least two very different responses to the same solar wind (SW) conditions: a classic, enhanced RC with Dst response, or a 1000-fold increase in the outer radiation belt MeV electrons (ORBE). August 29, October 14 and 23, 1996 are examples of Dst storms, whereas April 15, 1996 and January 10, 1997 are examples of MeV storms. It is this second response that is so deadly to some geosynchronous spacecraft, whereas geomagnetic storms are categorized by the first response. Neither of these appear to be correlated to the SW conditions driving substorms. Why should the SW energy appear in the radiation belts or the ring current independently? We hypothesize that the RC couples to the electric power available (Ey), the ORBE couple to the mechanical power available (Vx), and the Tail couples to the magnetic energy (Bz) available in the SW. The transducer for RC may be subauroral parallel potentials, the transducer for ORBE may be the cusp, while the Tail substorm transducer is yet a third independent mechanism for extracting SW energy. Evidence for this theory comes from the novel POLAR satellite that traverses the cusp, the plasmasheet and the radiation belts.  相似文献   

16.
Energetic particle signatures of geoeffective coronal mass ejections   总被引:1,自引:0,他引:1  
We have studied statistically associations of moderate and intense geomagnetic storms with coronal mass ejections (CMEs) and energetic particle events. The goal was to identify specific energetic particle signatures, which could be used to improve the predictions of the geoeffectiveness of full and partial halo CMEs. Protons in the range 1–110 MeV from the ERNE experiment onboard SOHO are used in the analysis. The study covers the time period from August 1996 to July 2000. We demonstrate the feasibility of energetic particle observations as an additional source of information in evaluating the geoeffectiveness of full and partial halo CMEs. Based on the observed onset times of solar energetic particle (SEP) events and energetic storm particle (ESP) events, we derive a proxy for the transit times of shocks driven by the interplanetary counterparts of coronal mass ejections from the Sun to the Earth. For a limited number of geomagnetic storms which can be associated to both SEP and ESP signatures, we found that this transit time correlates with the strength of geomagnetic storms.  相似文献   

17.
We have modeled “gradual” solar energetic particle events through numerical simulations using a StochasticDifferential Equation (SDE) method. We consider that energetic particle events are roughly divided into two groups: (1) where the shock was driven by coronal mass ejections (CMEs) associated with large solar flares, and (2) where they have no related solar events apart from the CMEs. (The detailed classification of energetic particle events was discussed in our previous paper.) What we call “gradual” solar energetic particle events belong to the former group. Particles with energies greater than 10 MeV are observed within several hours after the occurrence of flares and CMEs in many gradual events. By applying the SDE method coupled with particle splitting to diffusive acceleration, we found that an injection of high energy particles is necessary for early enhancement of such a high-energy proton flux and that it should not be presumed that the solar wind particles act as the seed population.  相似文献   

18.
The impact of nonspherical bodies is complex, even at low velocities where contacting bodies are assumed to be rigid. Models of varying complexity (e.g. finite element methods) can be used to evaluate such impacts, but it is advantageous to use impulsive models such as that by Stronge, which are computationally inexpensive and governed by (fixed) material interaction coefficients. Stronge’s model parameterizes nonspherical rigid-body impacts with energetic restitution and Coulomb friction coefficients. This model was successfully used in large-scale simulations of ballistic lander deployment to asteroids and comets, whose trajectories involve dozens of chaotic bounces. To better understand the complex dynamics of these bouncing trajectories, this paper performs a dedicated study of idealized bouncing in two dimensions and on a flat plane, in order to limit the involved degrees of freedom. Using a numerical implementation of Stronge’s model, the motion of a bouncing square is simulated with different impact conditions: the square’s impact attitude, velocity, and mass distribution as well as the surface restitution and friction coefficients. The simulation results are used to investigate how these conditions affect the bouncing motion of the square, with a distinction between first impacts with zero angular velocity and successive impacts in which the square is spinning. This reveals how a single “macroscopic” bounce that separates two ballistic arcs may often consist of multiple micro-impacts that occur in quick succession. For the different impact conditions, we show how the number of micro-impacts per macro-bounce varies, as well as the normal, tangential, and total kinematic restitution coefficients. These are different from the energetic material restitution coefficient that parameterizes the impact. Finally, we examine how the settling time and distance of the bouncing trajectories change. These trends provide insight into the bouncing motion of ballistic lander spacecraft in small-body microgravity.  相似文献   

19.
On 14 October 1999, the Chinese-Brazil earth resource satellite (CBERS-1) was launched in China. On board of the satellite there was an instrument designed at Peking University to detect the energetic particle radiation inside the satellite so the radiation fluxes of energetic particles in the cabin can be monitored continuously. Inside a satellite cabin, radiation environment consists of ether penetrated energetic particles or secondary radiation from satellite materials due to the interactions with primary cosmic rays.Purpose of the detectors are twofold, to monitor the particle radiation in the cabin and also to study the space radiation environment The data can be used to study the radiation environment and their effects on the electronics inside the satelhte cabin. On the other hand, the data are useful in study of geo-space energetic particle events such as solar proton events, particle precipitation and variations of the radiation belt since there should be some correlation between the radiation situation inside and outside the satellite.The instrument consists of two semi-conductor detectors for protons and electrons respectively. Each detector has two channels of energy ranges. They are 0.5-2MeV and ≥2MeV for electrons and 5-30MeV and 30-60MeV for protons. Counting rate for all channels are up to 104/(cm2@s)and power consumption is about 2.5 W. There are also the additional functions of CMOS TID (total integrated dose) effect and direct SEU monitoring. The data of CBMC was first sent back on Oct. 17 1999 and it's almost three years from then on. The detector has been working normally and the quality of data is good.The preliminary results of data analysis of CBMC not only reveal the effects of polar particle precipitation and radiation belt on radiation environment inside a satellite, but also show some important features of the geo-space energetic particle radiation.As one of the most important parameters of space weather, the energetic charged particles have great influences on space activities and ground tech nology. CBMC is perhaps the first long-term on-board special equipment to monitor the energetic particle radiation environment inside the satellite and the data it accnmulated are very useful in both satellite designing and space research.  相似文献   

20.
The proton telescope aboard the GOES-7 satellite continuously records the proton flux at geosynchronous orbit, and therefore provides a direct measurement of the energetic protons arriving during solar energetic particle (SEP) events. Microelectronic devices are susceptible to single event upset (SEU) caused by both energetic protons and galactic cosmic ray (GCR) ions. Some devices are so sensitive that their upsets can be used as a dosimetric indicator of a high fluence of particles. The 93L422 1K SRAM is one such device. Eight of them are on the TDRS-1 satellite in geosynchronous orbit, and collectively they had been experiencing 1-2 upset/day due to the GCR background. During the large SEP events of 1989 the upset rate increased dramatically, up to about 250 for the week of 19 Oct, due to the arrival of the SEP protons. Using the GOES proton spectra, the proton-induced SEU cross section curve for the 93L422 and the shielding distribution around the 93L422, the calculated upsets based on the GOES satellite data compared well against the log of measured upsets on TDRS-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号