首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Responses of low-latitude ionospheric critical frequency of F2 layer to geomagnetic activities in different seasons and under different levels of solar activity are investigated by analyzing the ionospheric foF2 data from DPS-4 Digisonde in Hainan Observatory during 2002–2005. The results are as follows: (1) the response of foF2 to geomagnetic activity in Hainan shows obvious diurnal variation except for the summer in low solar activity period. Generally, geomagnetic activity will cause foF2 to increase at daytime and decrease at nighttime. The intensity of response of foF2 is stronger at nighttime than that at daytime; (2) seasonal dependence of the response of foF2 to geomagnetic activity is very obvious. The negative ionospheric storm effect is the strongest in summer and the positive ionospheric storm effect is the strongest in winter; (3) the solar cycle has important effect on the response of foF2 to geomagnetic activity in Hainan. In high solar activity period, the diurnal variation of the response of foF2 is very pronounced in each season, and the strong ionospheric response can last several days. In low solar activity period, ionospheric response has very pronounced diurnal variation in winter only; (4) the local time of geomagnetic activities occurring also has important effect on the responses of foF2 in Hainan. Generally, geomagnetic activities occurred at nighttime can cause stronger and longer responses of foF2 in Hainan.  相似文献   

2.
The statistical analysis of the quiet ionosphere F2-layer maximum parameters variability (deviations of NmF2 and hmF2 from the quiet medians, δn and Δh) under solar minimum at day (10–16 LT) and night (22–04 LT) hours based on data of Irkutsk station for 2007–2010 is presented. It is found that the experimental distribution (histogram) of δn can be approximated by a mixture of two normal distributions. The first and second components of the mixture characterize, mainly, relatively weak and strong fluctuations of δn which are presumably associated with the ionospheric effects of the atmospheric gravity waves and of the planetary waves and tides correspondingly. Deviation of the δn histogram from a single normal distribution is most considerable at night hours in winter and equinoxes. For these conditions the weak fluctuations of δn are mainly negative and the strong ones are mainly positive. The Δh histogram is a normal distribution except day hours in winter and equinoxes when a weak deviation of the histogram from the normal distribution occurs.  相似文献   

3.
Solar dependence of electron and ion temperatures (Te and Ti) in the ionosphere is studied using RPA data onboard SROSS C2 at an altitude of ∼500 km and 77°E longitude during early morning hours (04:00–07:00 LT) for three solar activities: solar minimum, moderate and maximum during winter, summer and equinox months in 10°S–20°N geomagnetic latitude. In winter the morning overshoot phenomenon is observed around 06:00 LT (Te enhances to ∼4000 K) during low-solar activity and to Te ∼ 3800 K, during higher solar activity. In summer, it is observed around 05:30 LT, but the rate of Te enhancement is higher during moderate solar activity (∼2700 K/hr) than the low-solar activity (∼1700 K/hr). During equinox, this phenomenon is delayed and is observed around 06:00 LT (∼4200 K) during all three activities.  相似文献   

4.
Using Irkutsk digisonde data obtained in 2003–2011, a morphological analysis of the G condition occurrence has been made. The G condition was found to occur during daylight hours in summer; in winter, it is extremely rare, and its appearance is associated with intense magnetic storms. In the years of moderate solar activity, the G condition is most frequently registered at Kp ? 4, in the forenoon. During low solar activity, it can be observed under quiet geomagnetic conditions; in most cases, local time of its appearance shifts to afternoon hours. The highest percentage of the G condition occurrence (7.7–6.4%) was recorded in June and July 2008 when the levels of solar and geomagnetic activity were abnormally low.  相似文献   

5.
6.
We report work utilizing 15-min resolution ionospheric data obtained with DPS-4 digisonde in 2003–2011 to study the seasonal variations in amplitudes and phases of the most powerful spectral components of the F2 layer critical frequency (foF2) and peak height (hmF2) fluctuations over Irkutsk (52.5°N, 104.0°E). We show that fluctuations of both parameters contain quasi-harmonic components with periods of Tn = 24/n h (n = 1–7). The number of distinct spectral peaks varies from 3 in summer to 7 in winter. Amplitude and phase characteristics of the diurnal (n = 1) and semidiurnal (n = 2) components is studied using the data sets extracted from the original data sets with band-pass filter. It has been found that the amplitudes of diurnal/semidiurnal foF2 and diurnal hmF2 components are maximum in winter and minimum in summer. Amplitudes of the diurnal components vary gradually; those of the foF2 semidiurnal one, abruptly, thus forming a narrow winter maximum in November–January. The phase (local time of maximum) of the diurnal foF2 component increases gradually by 4–6 h from winter to summer. The phase of the semidiurnal foF2 component is nearly stable in winter/summer and sharply decreases (increases) by 2–3 h near the spring (autumn) equinox. The phase of the diurnal component of hmF2 (local time of minimum) varies slightly between 1130 and 1300 LT; that of the semidiurnal one decreases (increases) by 4–6 h from January to March (from September to November). The results obtained show that the main features of seasonal variations in the diurnal and semidiurnal components of the mid-latitude F2 layer parameters recur consistently during the solar activity growth and decline phases.  相似文献   

7.
We present an investigation of the influence of the 27-day solar flux variations, caused by solar rotation, on the ionosphere parameters such as the F2 layer critical frequency (foF2) and the total electron content (TEC). Our observational data were obtained with the Irkutsk Digisonde (DPS-4) located at 52.3 North and 104.3 East during the period from 2003 to 2005. In addition, we use TEC data from the Global Ionosphere Maps (GIM) based on Global Positioning System (GPS) satellites. The solar radiation flux at a wavelength of 10.7 cm (F10.7 index) is used as an index characterizing the solar activity level. A good correlation between observed ionosphere parameters and solar activity variations is found especially in autumn-to-winter season. We estimate the impact of the 27-day solar flux variations on the day-to-day variability and determine the time delay of the ionosphere response.  相似文献   

8.
The present paper deals with observations of wave activity in the period range 1–60 min at ionospheric heights over the Western Cape, South Africa from May 2010 to July 2010. The study is based on the Doppler type sounding of the ionosphere. The Doppler frequency shift measurements are supplemented with measurements of collocated Digisonde DPS-4D at SANSA Space Sciences, Hermanus. Nine geomagnetically quiet days and nine geomagnetically active days were included in the study. Waves of periods 4–30 min were observed during the daytime independent of the level of geomagnetic activity. Amplitudes of 10–30 min waves always increased between 14:00 and 16:15 UT (16:00–18:15 LT). Secondary maxima were observed between 06:00 and 07:00 UT (08:00–09:00 LT). The maximum wave amplitudes occurred close to the time of passage of the solar terminator in the studied region which is known to act as a source of gravity waves.  相似文献   

9.
Statistical and spectral analyses are performed to investigate variations of two ionosphere F2 layer key parameters, the critical frequency (foF2) and the peak height (hmF2), that were measured over Irkutsk (52.5°N, 104.0°E) from December 2006 to January 2008 under solar minimum. The analyses showed that both parameters contain quasi-harmonic oscillations with periods of Tn = 24/n hours (n = 1–7), among which the diurnal (n = 1) and semidiurnal (n = 2) ones are the strongest. Seasonal variations are explored of mean and median values, spectrum, amplitude, and phase of the diurnal and semidiurnal components of foF2 and hmF2.  相似文献   

10.
Ionogram observations from the ionosonde at Fuke (9.5°N geomagnetic latitude), a Chinese low latitude station, in 2010–2012 are analyzed to present the features of F3 layer under low and moderate solar activity conditions. Structure of the ionogram, displaying the F3 layer, was more distinct and clear during MSA than LSA periods especially during spring to summer. Start time of occurrence of the F3 layer is about at 0830–0900 LT and is approximately the same for LSA and MSA conditions. The average duration time of the F3 layer occurrence was 181 min per day under F10.7 = 75 condition, 263 min in F10.7 = 99 and 358 min in F10.7 = 125, respectively. The differences of h′F2 and h′F3 exhibited obvious semiannual variation observed at Fuke from March 2010 to June 2012 and increased with increasing solar activity. The difference of foF2 and foF3 in the months February, March, September, October and November is less evident in the middle solar activity period 2011–2012 than the low solar activity 2010 and in the other period it shows a slight increase (0.5 MHz) or keeps constant. The results show that the solar activity dependence of the F3 layer occurrence at low latitude away from the magnetic equator is different from that at near the magnetic equator.  相似文献   

11.
The variations of plasma density in topside ionosphere during 23rd/24th solar cycle minimum attract more attentions in recently years. In this analysis, we use the data of electron density (Ne) from DEMETER (Detection of Electromagnetic Emissions Transmitted from Earthquake Regions) satellite at the altitude of 660–710 km to investigate the solstitial and equinoctial asymmetry under geomagnetic coordinate system at LT (local time) 1030 and 2230 during 2005–2010, especially in solar minimum years of 2008–2009. The results reveal that ΔNe (December–June) is always positive over Southern Hemisphere and negative over northern part whatever at LT 1030 or 2230, only at 0–10°N the winter anomaly occurs with ΔNe (December–June) > 0, and its amplitude becomes smaller with the declining of solar flux from 2005 to 2009. The ΔNe between September and March is completely negative during 2005–2008, but in 2009, it turns to be positive at latitudes of 20°S–40°N at LT 1030 and 10°S–20°N at LT 2230. Furthermore, the solstitial and equinoctial asymmetry index (AI) are calculated and studied respectively, which all depends on local time, latitude and longitude. The notable differences occur at higher latitudes in solar minimum year of 2009 with those in 2005–2008. The equinoctial AI at LT 2230 is quite consistent with the variational trend of solar flux with the lowest absolute AI occurring in 2009, the extreme solar minimum, but the solstitial AI exhibits abnormal enhancement during 2008 and 2009 with bigger AI than those in 2005–2007. Compared with the neutral compositions at 500 km altitude, it illustrates that [O/N2] and [O] play some roles in daytime and nighttime asymmetry of Ne at topside ionosphere.  相似文献   

12.
The interplanetary magnetic field, geomagnetic variations, virtual ionosphere height h′F, and the critical frequency foF2 data during the geomagnetic storms are studied to demonstrate relationships between these phenomena. We study 5-min ionospheric variations using the first Western Pacific Ionosphere Campaign (1998–1999) observations, 5-min interplanetary magnetic field (IMF) and 5-min auroral electrojets data during a moderate geomagnetic storm. These data allowed us to demonstrate that the auroral and the equatorial ionospheric phenomena are developed practically simultaneously. Hourly average of the ionospheric foF2 and h′F variations at near equatorial stations during a similar storm show the same behavior. We suppose this is due to interaction between electric fields of the auroral and the equatorial ionosphere during geomagnetic storms. It is shown that the low-latitude ionosphere dynamics during these moderate storms was defined by the southward direction of the Bz-component of the interplanetary magnetic field. A southward IMF produces the Region I and Region II field-aligned currents (FAC) and polar electrojet current systems. We assume that the short-term ionospheric variations during geomagnetic storms can be explained mainly by the electric field of the FAC. The electric fields of the field-aligned currents can penetrate throughout the mid-latitude ionosphere to the equator and may serve as a coupling agent between the auroral and the equatorial ionosphere.  相似文献   

13.
In this paper, the AdaBoost-BP algorithm is used to construct a new model to predict the critical frequency of the ionospheric F2-layer (foF2) one hour ahead. Different indices were used to characterize ionospheric diurnal and seasonal variations and their dependence on solar and geomagnetic activity. These indices, together with the current observed foF2 value, were input into the prediction model and the foF2 value at one hour ahead was output. We analyzed twenty-two years’ foF2 data from nine ionosonde stations in the East-Asian sector in this work. The first eleven years’ data were used as a training dataset and the second eleven years’ data were used as a testing dataset. The results show that the performance of AdaBoost-BP is better than those of BP Neural Network (BPNN), Support Vector Regression (SVR) and the IRI model. For example, the AdaBoost-BP prediction absolute error of foF2 at Irkutsk station (a middle latitude station) is 0.32 MHz, which is better than 0.34 MHz from BPNN, 0.35 MHz from SVR and also significantly outperforms the IRI model whose absolute error is 0.64 MHz. Meanwhile, AdaBoost-BP prediction absolute error at Taipei station from the low latitude is 0.78 MHz, which is better than 0.81 MHz from BPNN, 0.81 MHz from SVR and 1.37 MHz from the IRI model. Finally, the variety characteristics of the AdaBoost-BP prediction error along with seasonal variation, solar activity and latitude variation were also discussed in the paper.  相似文献   

14.
Earthquake prediction stimulates the searches for a correlation between seismic activity and ionospheric anomalies. Contrary to common focuses on strong earthquakes, we report the ionospheric disturbances, 2 days before a moderate Ms = 4.7 Chongqing earthquake (29.4°N, 105.5°E, depth = 7.0 km, occurred at 21:21 LT, 10 September, 2010) with the data of ground-based ionosondes and IGS receivers. The data covering the period under the quiet geomagnetic conditions and a geomagnetic storm was analyzed with upper and lower bounds. It is found that there were significant enhancements of foF2 and total electron content (TEC) on the afternoon of 8 September, 2010, with a limited area close to the epicentre, which was different from the feature of ionospheric perturbations triggered by the geomagnetic storm on 15 September. Taking into account the heliogeomagnetical condition, we conclude that the observed ionospheric enhancements were very likely associated with the forthcoming moderate Chongqing earthquake, which implies that the relationship between the amplitudes of ionospheric disturbances and earthquakes is very complicated.  相似文献   

15.
The diurnal variations in total electron content (TEC) in the equatorial ionisation anomaly (EIA) region are not always represented by two crests on both sides of the magnetic equator. Sometimes, only an obvious single crest is evident at equatorial and low latitudes. In this paper, we focus on analysis of the morphological features of the single crest phenomenon in TEC around 120°E longitude during geomagnetic quiet days (Kp < 4). The variations in TEC are also compared with morphological parameters (foF2 and hmF2) derived from the International Reference Ionosphere extended to Plasmasphere (IRI–Plas) model. Our results show that the single crest phenomenon occurs mainly on days with extremely low solar activity, while the corresponding F2 layer critical frequency showed obvious asymmetry, or even only a single peak.  相似文献   

16.
We describe a Parameterized Regional Ionospheric Model (PARIM) to calculate the spatial and temporal variations of the ionospheric electron density/plasma frequency over the Brazilian sector. The ionospheric plasma frequency values as calculated from an enhanced Sheffield University Plasmasphere–Ionosphere Model (SUPIM) were used to construct the model. PARIM is a time-independent 3D regional model (altitude, longitude/local time, latitude) used to reproduce SUPIM plasma frequencies for geomagnetic quiet condition, for any day of the year and for low to moderately high solar activity. The procedure to obtain the modeled representation uses finite Fourier series so that all plasma frequency dependencies can be represented by Fourier coefficients. PARIM presents very good results, except for the F region peak height (hmF2) near the geomagnetic equator during times of occurrence of the F3 layer. The plasma frequency calculated by IRI from E region to bottomside of the F region present latitudinal discontinuities during morning and evening times for both solar minimum and solar maximum conditions. Both the results of PARIM and the IRI for the E region peak density show excellent agreement with the observational values obtained during the conjugate point equatorial experiment (COPEX) campaign. The IRI representations significantly underestimate the foF2 and hmF2 compared to the observational results over the COPEX sites, mainly during the evening–nighttime period.  相似文献   

17.
On December 11, 1967 at 05:21 LT, an immense earthquake of magnitude 6.7 struck Koyna, the Indian province of Maharashtra. Its epicenter was located at geographic latitude 17.37°N and longitude 73.75°E with depth of about 3 km. Ground based measurements show variation in the critical frequency of ionospheric F2 layer (foF2) before and after the shock. In the present study the behavior of F2-region of ionosphere has been examined over the equatorial and low latitudinal region ionosphere during the month of December 1967 around the time of Koyna earthquake. For this purpose, the ionospheric data collected with the help of ground-based ionosondes installed at Hyderabad (located close to the earthquake epicenter) Ahmedabad, Trichirapulli, Kodaikanal and Trivendrum have been utilized. The upper and lower bound of Interquartile range (IRQ) are constructed to monitor the variations in foF2 other than day-to-day and diurnal pattern for finding the seismo-ionospheric precursors. Some anomalous electron density variations are observed between post midnight hours to local pre-noon hours at each station. These anomalies are strongly time dependent and appeared a couple of days before the main shock. The period considered in this study comes under the quiet geomagnetic conditions. Hence, the observed anomalies (which are more than the usual day-to-day variability) over all stations are likely to be associated with this imminent earthquake. The possible mechanism to explain these anomalies is the effect of seismogenic electric field generated just above the surface of earth within the earthquake preparation zone well before the earthquake due to emission of radioactive particles and then propagated upward, which perturbs the F-region ionosphere.  相似文献   

18.
Differences in the external part of the vertical geomagnetic component point to the existence of local inhomogeneities in the magnetosphere or the ionosphere. Usually used magnetic indices are not sufficient to express the state of ionosphere, the common used global Kp index derived in the three-hour interval does not indicate much more rapidly changes appearing in ionosphere. Magnetic index η reflects ionospheric disturbances when other indices show very quiet conditions. Data of ionospheric characteristics (foE, foEs, h’E, h’F2) during 28-day long quiet day conditions (Kp = 0–2) in 2004 were analyzed. The correlations between strong local disturbances in ionosphere during very quiet days and high values of magnetic index η were found. The most sensitive to magnetic influence – ionospheric E layer data (foE characteristic) – reaches median deviations up to (+0.8 MHz and −0.8 MHz) during very low magnetic activity (Kp = 0–1). The high peaks (2–2.7) of the magnetic index η correlate in time with large local median deviations of foE. Such local deviations can suggest local inhomogeneities (vertical drifts) in the ionosphere. The correlation in space is not trivial. The strong peak of η is situated between the positive and negative deviations of foE. Additional observation is connected with correlation in time of the high η value with the negative median deviations of h’F2 (in some cases up to −90 km). The analysis was based on one-minute data recorded at each of 20 European Magnetic Observatories working in the INTERMAGNET network and from 19 ionosondes for 2004. Ionospheric data are sparse in time and in space in opposite to the magnetic data. The map of the magnetic indices can suggest the behavior of ionospheric characteristics in the areas where we have no data.  相似文献   

19.
The effect of geomagnetic storms on the F2 region was studied by calculating the deviation, ΔfoF2, of foF2 during 40 magnetic storms, ranging from moderate (Dst < −50 nT) to very intense (Dst < −200 nT) of the 21st solar cycle. In order to study the variation of storm-time foF2 with latitude, season and storm strength, ionosonde data were obtained from eight stations spanning a latitudinal range of +60–−60°. The stations chosen lay in a narrow longitudinal range of 140–151°, so that local time difference between the stations is practically negligible. The features exhibited by positive and negative phases were essentially different. The storm time ΔfoF2 clearly exhibited a latitudinal variation and this variation were found to be coupled with the seasonal variation. As for the variation with storm intensity, though ΔfoF2 was found to vary even between two storms of almost equal intensity, the amplitude of a positive or negative phase, |ΔfoF2max| showed a distinct upper limit for each intensity category of storms.  相似文献   

20.
This paper presents the observed ionospheric F-region critical frequency, foF2, and peak height, hmF2, at northern crest of equatorial ionization anomaly (EIA) area station, namely Chung-Li (24.9°N, 121.1°E, dip 35°), and to be compared with International Reference Ionosphere model (IRI-2001) predictions for the period from 1994 to 1999, corresponding to half of the 23rd solar cycle. The diurnal and seasonal variation of foF2 and hmF2 are analyzed for different solar phases, respectively. The result shows the largest discrepancies were observed during nighttime for foF2 and hmF2, respectively. The value of foF2 both CCIR and URSI selected in the IRI model produced a good agreement during the daytime and underestimated during the noon time for high solar activities. The underestimation at noon time is mainly caused by the fountain effect from equator. Further, the peak height hmF2 shows a larger variability around the midnight than daytime in the equinox and winter seasons and reserved in summer, respectively. The study shows that the monthly median values of observed hmF2 is somewhat lower than those predicated by the IRI model, at night time in all the seasons except the period of 04:00–06:00 LT and reverse at daytime in summer. In general the IRI model predictions with respect to the observed in hmF2 is much better than foF2. The percentage deviation of the observed foF2 (hmF2) values with respect to the IRI model varies from 5% to 80% (0–25%) during nighttime and 2–17% (0–20%) at daytime, respectively. In general, the model generates good results, although some improvements are still necessary to implement in order to obtain better simulations for ionospheric low-latitudes region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号