首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Responses of low-latitude ionospheric critical frequency of F2 layer to geomagnetic activities in different seasons and under different levels of solar activity are investigated by analyzing the ionospheric foF2 data from DPS-4 Digisonde in Hainan Observatory during 2002–2005. The results are as follows: (1) the response of foF2 to geomagnetic activity in Hainan shows obvious diurnal variation except for the summer in low solar activity period. Generally, geomagnetic activity will cause foF2 to increase at daytime and decrease at nighttime. The intensity of response of foF2 is stronger at nighttime than that at daytime; (2) seasonal dependence of the response of foF2 to geomagnetic activity is very obvious. The negative ionospheric storm effect is the strongest in summer and the positive ionospheric storm effect is the strongest in winter; (3) the solar cycle has important effect on the response of foF2 to geomagnetic activity in Hainan. In high solar activity period, the diurnal variation of the response of foF2 is very pronounced in each season, and the strong ionospheric response can last several days. In low solar activity period, ionospheric response has very pronounced diurnal variation in winter only; (4) the local time of geomagnetic activities occurring also has important effect on the responses of foF2 in Hainan. Generally, geomagnetic activities occurred at nighttime can cause stronger and longer responses of foF2 in Hainan.  相似文献   

2.
Earthquake prediction stimulates the searches for a correlation between seismic activity and ionospheric anomalies. Contrary to common focuses on strong earthquakes, we report the ionospheric disturbances, 2 days before a moderate Ms = 4.7 Chongqing earthquake (29.4°N, 105.5°E, depth = 7.0 km, occurred at 21:21 LT, 10 September, 2010) with the data of ground-based ionosondes and IGS receivers. The data covering the period under the quiet geomagnetic conditions and a geomagnetic storm was analyzed with upper and lower bounds. It is found that there were significant enhancements of foF2 and total electron content (TEC) on the afternoon of 8 September, 2010, with a limited area close to the epicentre, which was different from the feature of ionospheric perturbations triggered by the geomagnetic storm on 15 September. Taking into account the heliogeomagnetical condition, we conclude that the observed ionospheric enhancements were very likely associated with the forthcoming moderate Chongqing earthquake, which implies that the relationship between the amplitudes of ionospheric disturbances and earthquakes is very complicated.  相似文献   

3.
This paper presents the impact of diurnal, seasonal and solar activity effects on the variability of ionospheric foF2 in the African equatorial latitude. Three African ionospheric stations; Dakar (14.8°N, 17.4°W, dip: 11.4°N), Ouagadougou (12.4°N, 1.5°W, dip: 2.8°N) and Djibouti (11.5°N, 42.8°E, dip: 7.2°N) were considered for the investigation. The overall aim is to provide African inputs that will be of assistance at improving existing forecasting models. The diurnal analysis revealed that the ionospheric critical frequency (foF2) is more susceptible to variability during the night-time than the day-time, with two peaks in the range; 18–38% during post-sunset hours and 35–55% during post-midnight hours. The seasonal and solar activity analyses showed a post-sunset September Equinox maximum and June Solstice maximum of foF2 variability in all the stations for all seasons. At all the stations, foF2 variability was high for low solar activity year. Overall, we concluded that equatorial foF2 variability increases with decreasing solar activity during night-time.  相似文献   

4.
The long-term (solar cycle) changes in the Sun and how it affects the ionospheric F-region observed at São José dos Campos (23.2° S, 45.9° W), Brazil, a location under the southern crest of the equatorial ionospheric anomaly, have been investigated in this paper. The dependence of the F-region peak electron density (foF2) on solar activity during the descending phase of the 23rd solar cycle for the periods of high, medium, and low solar activity has been studied. The ionospheric F-region peak electron densities observed during high and medium solar activity show seasonal variations with maxima close to the equinox periods, whereas during the low solar activity the maxima during the equinox periods is absent. However, during the low solar activity only change observed is a large decrease from summer to winter months. We have further investigated changes in the different ionospheric F-region parameters (minimum virtual height of the F-region (h′F), virtual height at 0.834foF2 (hpF2), and foF2) during summer to winter months in low solar activity periods, 2006–2007 and 2007–2008. Large changes in the two ionospheric parameters (hpF2 and foF2) are observed during summer to winter months in the two low solar activity periods investigated.  相似文献   

5.
An analysis of properties and peculiarities of the nighttime winter foF2 increases (NWI) in the East Siberia is made on data of ionospheric station Irkutsk in the periods 1958–1992 and 2002–2009 and the empirical model of the F2 layer critical frequency under the geomagnetic quiet conditions deduced from these data (model Q-F2). It is revealed, that the NWI is the stable regularity of the quiet ionosphere over Irkutsk. The amplitude of the NWI (the difference between maximum and minimum foF2 values at night hours) is the greatest in December–January and nearly the same at low and middle solar activity. It is a peculiarity of the quiet ionosphere in the East Siberia. Maximum in night foF2 under quiet geomagnetic conditions is observed mainly after midnight (02-04 LT) and is shifted to predawn hours as solar activity increases. At low solar activity the quiet ionosphere at ∼02–04 LT shows the following properties: (a) the fluctuations of foF2 and hmF2 are in the reverse correlation but this dependence is weak; (b) very strong fluctuations of foF2 (|δfoF2| > 30%) occur seldom (∼4% of events) and almost all of them are positive; an example of very strong fluctuations of foF2 up to 60% can be an extreme increase in the foF2 on 19.12.2008; (c) the very strong enhancements of foF2 in the NWI maximum can be observed at the low geomagnetic activity, they occur more often during substorms but very seldom during geomagnetic storms. Possible reasons of these properties of NWI are discussed.  相似文献   

6.
This paper presents the observed ionospheric F-region critical frequency, foF2, and peak height, hmF2, at northern crest of equatorial ionization anomaly (EIA) area station, namely Chung-Li (24.9°N, 121.1°E, dip 35°), and to be compared with International Reference Ionosphere model (IRI-2001) predictions for the period from 1994 to 1999, corresponding to half of the 23rd solar cycle. The diurnal and seasonal variation of foF2 and hmF2 are analyzed for different solar phases, respectively. The result shows the largest discrepancies were observed during nighttime for foF2 and hmF2, respectively. The value of foF2 both CCIR and URSI selected in the IRI model produced a good agreement during the daytime and underestimated during the noon time for high solar activities. The underestimation at noon time is mainly caused by the fountain effect from equator. Further, the peak height hmF2 shows a larger variability around the midnight than daytime in the equinox and winter seasons and reserved in summer, respectively. The study shows that the monthly median values of observed hmF2 is somewhat lower than those predicated by the IRI model, at night time in all the seasons except the period of 04:00–06:00 LT and reverse at daytime in summer. In general the IRI model predictions with respect to the observed in hmF2 is much better than foF2. The percentage deviation of the observed foF2 (hmF2) values with respect to the IRI model varies from 5% to 80% (0–25%) during nighttime and 2–17% (0–20%) at daytime, respectively. In general, the model generates good results, although some improvements are still necessary to implement in order to obtain better simulations for ionospheric low-latitudes region.  相似文献   

7.
This study examines the response of the African equatorial ionospheric foF2 to different levels of geomagnetic storms, using the foF2 hourly data for the year 1989 from Ouagadougou (12.4°N, 1.5°W, dip: 2.8°N). The study also compares the observed data for the selected storm periods with the latest IRI model (IRI-2007). The foF2 values (both observed and predicted) show typical features of daytime peak and post-midnight minimum peak. The response of the ionospheric foF2 over Ouagadougou to storms events, during the night-time and post-midnight hours indicates negative responses of the ionospheric foF2, while that of the daytime hours indicates positive responses. For the investigation on the variability of the observed foF2 with respect to IRI-2007 model, with the exception of the analysis of the 20–22, October, 1989 data, where a midday peak was also observed on the first day, this study reveals two characteristic daily foF2 variability peaks: post-midnight and evening peaks. In addition, for all the geomagnetic storms considered, the URSI and CCIR coefficients of the IRI-2007 model show reasonable correspondence with each other, except for some few discrepancies. For instance, the event of 28–30 August, 1989 shows comparatively higher variability for the URSI coefficient, and at the foF2 peak values, the event of 20–22 October, 1989 shows that the CCIR coefficient is more susceptible to foF2 variability than the URSI coefficient. This study is aimed at providing African inputs for the future improvement of the IRI model.  相似文献   

8.
A comparison of the ionospheric F-region critical frequency (foF2) between ionosonde measurements and IRI-2016 predictions is studied over China during the period from January 2008 to October 2016. Four stations are selected, and the latitude coverage starts at 49.4°N and ends at 23.2°N with a sequential latitude interval of about 10°, the corresponding geomagnetic latitudes are from 39.5°N to 13.2°N. The results show that the variability of the observed foF2 versus latitudes, seasons, local time and levels of solar activity could be well reproduced by IRI-2016. However, the daily lowest value of foF2 from the IRI-2016 prediction occurs earlier than that from the ionosonde. Around the sunrise, the IRI-2016 prediction shows a very sharp rise and grows much faster than the observed foF2 in every month. The foF2 difference between the two options (URSI and CCIR) in IRI-2016 increases as the F10.7 index decreases. During 2008–2009, the annual average deviations of URSI and CCIR range from ?5% to ?10% and from 5% to ?5%, respectively. Generally, the CCIR performs better than URSI during postsunset under low solar activity or in Equatorial Ionization Anomaly (EIA) region over China, while it shows no large difference in performance with URSI in other locations or for other time.  相似文献   

9.
We have employed the hourly values of the ionospheric F-region critical frequency (foF2) obtained from Ouagadougou ionosonde, Burkina Faso (geographic coordinates 12° N, 1.8° W) during the interval of 1985–1995 (solar cycle 22) and solar radio flux of 10 cm wavelength (F10.7) to develop a local model (LM) for the African low-latitude station. The model was developed from regression analysis method, using the two-segmented regression analysis. We validated LM with foF2 data from Korhogo observatory, Cote d’Ivorie (geographical coordinates 9.3° N, 5.4° W). LM as well as the International Reference Ionosphere (IRI) agrees well with observations. LM gave some improvement on the IRI-predicted foF2 values at the sunrise (06 LT) at all solar flux levels and in all seasons except June solstice. The performance of the models at the representing the salient features of the equatorial foF2 was presented. Considering daytime and nighttime performances, LM and IRI are comparable in low solar activity (LSA), LM performed better than IRI in moderate solar activity (MSA), while IRI performed better than LM in high solar activity (HSA). CCIR has a root mean square error (r.m.s.e), which is only 0.10 MHz lower than that of LM while LM has r.m.s.e, which is about 0.05 MHz lower than that of URSI. In general, our result shows that performance of IRI, especially the CCIR option of the IRI, is quite comparable with the LM. The improved performance of IRI is a reflection of the numerous contributions of ionospheric physicists in the African region, larger volume of data for the IRI and the diversity of data sources, as well as the successes of the IRI task force activities.  相似文献   

10.
Monthly median values of foF2, hmF2 and M(3000)F2 parameters, with quarter-hourly time interval resolution for the diurnal variation, obtained with DPS4 digisonde at Hainan (19.5°N, 109.1°E; Geomagnetic coordinates: 178.95°E, 8.1°N) are used to investigate the low-latitude ionospheric variations and comparisons with the International Reference Ionosphere (IRI) model predictions. The data used for the present study covers the period from February 2002 to April 2007, which is characterized by a wide range of solar activity, ranging from high solar activity (2002) to low solar activity (2007). The results show that (1) Generally, IRI predictions follow well the diurnal and seasonal variation patterns of the experimental values of foF2, especially in the summer of 2002. However, there are systematic deviation between experimental values and IRI predictions with either CCIR or URSI coefficients. Generally IRI model greatly underestimate the values of foF2 from about noon to sunrise of next day, especially in the afternoon, and slightly overestimate them from sunrise to about noon. It seems that there are bigger deviations between IRI Model predictions and the experimental observations for the moderate solar activity. (2) Generally the IRI-predicted hmF2 values using CCIR M(3000)F2 option shows a poor agreement with the experimental results, but there is a relatively good agreement in summer at low solar activity. The deviation between the IRI-predicted hmF2 using CCIR M(3000)F2 and observed hmF2 is bigger from noon to sunset and around sunrise especially at high solar activity. The occurrence time of hmF2 peak (about 1200 LT) of the IRI model predictions is earlier than that of observations (around 1500 LT). The agreement between the IRI hmF2 obtained with the measured M(3000)F2 and the observed hmF2 is very good except that IRI overestimates slightly hmF2 in the daytime in summer at high solar activity and underestimates it in the nighttime with lower values near sunrise at low solar activity.  相似文献   

11.
This paper presents traveling ionospheric disturbances (TIDs) observations from GPS measurements over the South African region during the geomagnetically disturbed period of 29–31 October 2003. Two receiver arrays, which were along two distinct longitudinal sectors of about 18°-20° and 27°-28° were used in order to investigate the amplitude, periods and virtual propagation characteristics of the storm induced ionospheric disturbances. The study revealed a large sudden TEC increase on 28 October 2003, the day before the first of the two major storms studied here, that was recorded simultaneously by all the receivers used. This pre-storm enhancement was linked to an X-class solar flare, auroral/magnetospheric activities and vertical plasma drift, based on the behaviour of the geomagnetic storm and auroral indices as well as strong equatorial electrojet. Diurnal trends of the TEC and foF2 measurements revealed that the geomagnetic storm caused a negative ionospheric storm; these parameters were depleted between 29 and 31 October 2003. Large scale traveling ionospheric disturbances were observed on the days of the geomagnetic storms (29 and 31 October 2003), using line-of-sight vertical TEC (vTEC) measurements from individual satellites. Amplitude and dominant periods of these structures varied between 0.08–2.16 TECU, and 1.07–2.13 h respectively. The wave structures were observed to propagate towards the equator with velocities between 587.04 and 1635.09 m/s.  相似文献   

12.
Diurnal and seasonal variations of critical frequency of ionospheric F2-region ‘foF2’ and the height of peak density ‘hmF2’ are studied using modern digital ionosonde observations of equatorial ionization anomaly (EIA) crest region, Bhopal (23.2°N, 77.6°E, dip 18.5°N), during solar minimum period 2007. Median values of these parameters are obtained at each hour using manually scaled data during different seasons and compared with the International Reference Ionosphere-2001 model predictions. The observations suggest that on seasonal basis, the highest values of foF2 are observed during equinox months, whereas highest values of hmF2 are obtained in summer and lowest values of both foF2 and hmF2 are observed during winter. The observed median and IRI predicted values of foF2 and hmF2 are analyzed with upper and lower bound of inter-quartile range (IQR) and it is find out that the observed median values are well inside the inter-quartile range during the period of 2007. Comparison of the recorded foF2 and hmF2 values with the IRI-2001 output reveals that IRI predicted values exhibit better agreement with hmF2 as compared to foF2. In general, the IRI model predictions show some agreement with the observations during the year 2007. Therefore it is still necessary to implement improvements in order to obtain better predictions for EIA regions.  相似文献   

13.
In this paper, the AdaBoost-BP algorithm is used to construct a new model to predict the critical frequency of the ionospheric F2-layer (foF2) one hour ahead. Different indices were used to characterize ionospheric diurnal and seasonal variations and their dependence on solar and geomagnetic activity. These indices, together with the current observed foF2 value, were input into the prediction model and the foF2 value at one hour ahead was output. We analyzed twenty-two years’ foF2 data from nine ionosonde stations in the East-Asian sector in this work. The first eleven years’ data were used as a training dataset and the second eleven years’ data were used as a testing dataset. The results show that the performance of AdaBoost-BP is better than those of BP Neural Network (BPNN), Support Vector Regression (SVR) and the IRI model. For example, the AdaBoost-BP prediction absolute error of foF2 at Irkutsk station (a middle latitude station) is 0.32 MHz, which is better than 0.34 MHz from BPNN, 0.35 MHz from SVR and also significantly outperforms the IRI model whose absolute error is 0.64 MHz. Meanwhile, AdaBoost-BP prediction absolute error at Taipei station from the low latitude is 0.78 MHz, which is better than 0.81 MHz from BPNN, 0.81 MHz from SVR and 1.37 MHz from the IRI model. Finally, the variety characteristics of the AdaBoost-BP prediction error along with seasonal variation, solar activity and latitude variation were also discussed in the paper.  相似文献   

14.
The ionosphere induces a time delay in transionospheric radio signals such as the Global Positioning System (GPS) signal. The Total Electron Content (TEC) is a key parameter in the mitigation of ionospheric effects on transionospheric signals. The delay in GPS signal induced by the ionosphere is proportional to TEC along the path from the GPS satellite to a receiver. The diurnal monthly and seasonal variations of ionospheric electron content were studied during the year 2010, a year of extreme solar minimum (F10.7 = 81 solar flux unit), with data from the GPS receiver and the Digisonde Portable Sounder (DPS) collocated at Ilorin (Geog. Lat. 8.50°N, Long. 4.50°E, dip −7.9°). The diurnal monthly variation shows steady increases in TEC and F2-layer critical frequency (foF2) from pre-dawn minimum to afternoon maximum and then decreases after sunset. TEC show significant seasonal variation during the daytime between 0900 and 1900 UT (LT = UT + 1 h) with a maximum during the March equinox (about 35 TECU) and minimum during the June solstice (about 24 TECU). The GPS-TEC and foF2 values reveal a weak seasonal anomaly and equinoctial asymmetry during the daytime. The variations observed find their explanations in the amount of solar radiation and neutral gas composition. The measured TEC and foF2 values were compared with last two versions of the International Reference Ionosphere (IRI-2007 and IRI-2012) model predictions using the NeQuick and CCIR (International Radio Consultative Committee) options respectively in the model. In general, the two models give foF2 close to the experimental values, whereas significant discrepancies are found in the predictions of TEC from the models especially during the daytime. The error in height dependent thickness parameter, daytime underestimation of equatorial drift and contributions of electrons from altitudes above 2000 km have been suggested as the possible causes.  相似文献   

15.
Research on empirical or physical models of ionospheric parameters is one of the important topics in the field of space weather and communication support services. To improve the accuracy of predicting the monthly median ionospheric propagating factor at 3000 km of the F2 layer (identified as M(3000)F2) for high frequency radio wave propagation, a model based on modified orthogonal temporal–spatial functions is proposed. The proposed model has three new characteristics: (1) The solar activity parameters of sunspot number and the 10.7-cm solar radio flux are together introduced into temporal reconstruction. (2) Both the geomagnetic dip and its modified value are chosen as features of the geographical spatial variation for spatial reconstruction. (3) A series of harmonic functions are used to represent the M(3000)F2, which reflects seasonal and solar cycle variations. The proposed model is established by combining nonlinear regression for three characteristics with harmonic analysis by using vertical sounding data over East Asia. Statistical results reveal that M(3000)F2 calculated by the proposed model is consistent with the trend of the monthly median observations. The proposed model is better than the International Reference Ionosphere (IRI) model by comparison between predictions and observations of six station, which illustrates that the proposed model outperforms the IRI model over East Asia. The proposed method can be further expanded for potentially providing more accurate predictions for other ionospheric parameters on the global scale.  相似文献   

16.
The International Reference Ionosphere IRI-2001 model contains geomagnetic activity dependence based on an empirical storm time ionospheric correction (STORM model). An extensive validation of the STORM model for the middle latitude region has been performed. In this paper the ability of the STORM model to predict foF2 values at high latitudes is analyzed. For this, ionosonde data obtained at Base Gral. San Martin (68.1°S, 293°E) are compared with those obtained by the IRI-2001 model with or without storm correction during four geomagnetic storms that occurred in 2000 (Rz12 = 117) and 2001 (Rz12 = 111). The results show that predicted values with the STORM model follow the behaviour of foF2 experimental data better than without the STORM model. The relative deviation between measured and predicted foF2 reaches values of up to 24% and 43% with and without the STORM model in IRI-2001, during the main phase of the storms. In order to explain increases of electron density that occurred prior to the storm onset and also decreases of electron density observed during the first part of the recovery of the storm, possible physical mechanisms are discussed.  相似文献   

17.
The ionospheric variability at equatorial and low latitude region is known to be extreme as compared to mid latitude region. In this study the ionospheric total electron content (TEC), is derived by analyzing dual frequency Global Positioning System (GPS) data recorded at two stations separated by 325 km near the Indian equatorial anomaly region, Varanasi (Geog latitude 25°, 16/ N, longitude 82°, 59/ E, Geomagnetic latitude 16°, 08/ N) and Kanpur (Geog latitude 26°, 18/ N, longitude 80°, 12/ E, Geomagnetic latitude 17°, 18/ N). Specifically, we studied monthly, seasonal and annual variations as well as solar and geomagnetic effects on the equatorial ionospheric anomaly (EIA) during the descending phase of solar activity from 2005 to 2009. It is found that the maximum TEC (EIA) near equatorial anomaly crest yield their maximum values during the equinox months and their minimum values during the summer. Using monthly averaged peak magnitude of TEC, a clear semi-annual variation is seen with two maxima occurring in both spring and autumn. Results also showed the presence of winter anomaly or seasonal anomaly in the EIA crest throughout the period 2005–2009 only except during the deep solar minimum year 2007–2008. The correlation analysis indicate that the variation of EIA crest is more affected by solar activity compared to geomagnetic activity with maximum dependence on the solar EUV flux, which is attributed to direct link of EUV flux on the formation of ionosphere and main agent of the ionization. The statistical mean occurrence of EIA crest in TEC during the year from 2005 to 2009 is found to around 12:54 LT hour and at 21.12° N geographic latitude. The crest of EIA shifts towards lower latitudes and the rate of shift of the crest latitude during this period is found to be 0.87° N/per year. The comparison between IRI models with observation during this period has been made and comparison is poor with increasing solar activity with maximum difference during the year 2005.  相似文献   

18.
In this paper, the peculiarities of ionospheric response to geomagnetic disturbances observed at the decay and minimum of solar activity (SA) in the period 2004–2007 are investigated with respect to different geomagnetic conditions. Data from ionospheric stations and results of total electron content (TEC) measurements made at the network of GPS ground-based receivers located within the latitude–longitude sector (20–70°N, 90–160°Е) are used in this study. Three groups of anomalous ionospheric response to geomagnetic disturbances have been observed during low solar activity. At daytime, the large-scale traveling ionospheric disturbances (LSTIDs) could generally be related to the main phase of magnetic storm. Quasi-two-days wavelike disturbances (WLDs) have been also observed in the main phase independent of the geomagnetic storm intensity. Sharp electron density oscillations of short duration (OSD) occurred in the response to the onset of both main and recovery phases of the magnetic storm in the daytime at middle latitudes. A numerical model for ionosphere–plasmasphere coupling was used to interpret the occurrence of LS TIDs. Results showed that the LSTIDs might be associated with the unexpected lifting of F2 layer to the region with the lower recombination rate by reinforced meridional winds that produces the increase of the electron density in the F2 layer maximum.  相似文献   

19.
We present an observational study of magnetospheric and ionospheric disturbances during the December 2006 intense magnetic storm associated with the 4В/Х3.4 class solar flare. To perform the study we utilize the ground data from North–East Asian ionospheric and magnetic observatories (60–72°N, 88–152°E) and in situ measurements from LANL, GOES, Geotail and ACE satellites. The comparative analysis of ionospheric, magnetospheric and heliospheric disturbances shows that the interaction of the magnetosphere with heavily compressed solar wind and interplanetary magnetic field caused the initial phase of the magnetic storm. It was accompanied by the intense sporadic E and F2 layers and the total black-out in the nocturnal subauroral ionosphere. During the storm main phase, LANL-97A, LANL 1994_084, LANL 1989-046 and GOES_11 satellites registered a compression of the dayside magnetosphere up to their orbits. In the morning–noon sector the compression was accompanied by an absence of reflections from ionosphere over subauroral ionospheric station Zhigansk (66.8°N, 123.3°E), and a drastic decrease in the F2 layer critical frequency (foF2) up to 54% of the quite one over subauroral Yakutsk station (62°N, 129.7°E). At the end of the main phase, these stations registered a sharp foF2 increase in the afternoon sector. At Yakutsk the peak foF2 was 1.9 time higher than the undisturbed one. The mentioned ionospheric disturbances occurred simultaneously with changes in the temperature, density and temperature anisotropy of particles at geosynchronous orbit, registered by the LANL-97A satellite nearby the meridian of ionospheric and magnetic measurements. The whole complex of disturbances may be caused by radial displacement of the main magnetospheric domains (magnetopause, cusp/cleft, plasma sheet) with respect to the observation points, caused by changes in the solar wind dynamic pressure, the field of magnetospheric convection, and rotation of the Earth.  相似文献   

20.
In this investigation, we present and discuss the response of the ionospheric F-region in the South American and East Asian sectors during an intense geomagnetic storm in August 2005. The geomagnetic storm studied reached a minimum Dst of −216 nT at 12:00 UT on 24 August. In this work ionospheric sounding data obtained of 24, 25, and 26 August 2005 at Palmas (PAL; 10.2° S, 48.2° W; dip latitude 6.6° S), São José dos Campos (SJC, 23.2° S, 45.9° W; dip latitude 17.6° S), Brazil, Ho Chi Minh City, (HCM; 10.5° N, 106.3° E; dip latitude 2.9° N), Vietnam, Okinawa (OKI; 26.3° N, 127.8° E; dip latitude 21.2° N), Japan, are presented. Also, the GPS observations obtained at different stations in the equatorial and low-latitude regions in the Brazilian sector are presented. On the night of 24–25 August 2005, the h′F variations show traveling ionospheric disturbances associated with Joule heating in the auroral zone from SJC to PAL. The foF2 variations show a positive storm phase on the night of 24–25 August at PAL and SJC during the recovery phase. Also, the GPS-VTEC observations at several stations in the Brazilian sector show a fairly similar positive storm phase on 24 August. During the fast decrease of Dst (between 10:00 and 11:00 UT) on 24 August, there is a prompt penetration of electric field of magnetospheric origin that result in abrupt increase (∼12:00 UT) in foF2 at PAL, SJC (Brazil) and OKI (Japan) and in VTEC at IMPZ, BOMJ, PARA and SMAR (Brazil). OKI showed strong oscillations of the F-region on the night 24 August resulted to the propagation of traveling atmospheric disturbances (TADs) by Joule heating in the auroral region. These effects result a strong positive observed at OKI station. During the daytime on 25 August, in the recovery phase, the foF2 observations showed positive ionospheric storm at HCM station. Some differences in the latitudinal response of the F-region is also observed in the South American and East Asian sectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号